

Hewlett Packard Enterprise

Adapting to Thrive in a New Economy of Memory Abundance

Kirk Bresniker, Hewlett Packard Labs Chief Architect, HPE Fellow

This result deserves to be noted. It shows in a most striking way where the real difficulty, the main bottleneck, of an automatic very high speed computing device lies.

Clearly the practicality of a device as is contemplated here depends most critically on the possibility of building such an M[emory], and on the question of how simple such an M[emory] can be made to be

John von Neumann (1945), First Draft of a Report on the EDVAC

Moore's Law kept up with data creation in the traditional economy

The end of scaling at just the wrong time ...

8B × 20B × 100B × 1T

People

Mobile Devices

Social Infrastructure

Apps

Systems of Record → Systems of Engagement → Systems of Action

Analytics + visualization = actionable insight

Lifecycle of information

This graph is used to illustrate that:

- The duration of intelligence lifecycles can differ
- Intelligence "apps" can overlap on one or more stages
- An organization can have multiple coexisting intelligence apps of varying durations

Intelligence Lifecycles

I must Create a System, or be enslav'd by another Mans I will not Reason & Compare: my business is to Create

William Blake, "Jerusalem The Emanation of the Giant Albion", 1804-1820

Processor-Centric Computing

Memory-Driven Computing

The Machine in context

Shared nothing

Shared everything

The Machine in context

Shared nothing

Shared something

Shared everything

Interesting at every scale from Node

To enclosure

To Rack

To Data Center, hundreds of racks, hundreds of PBs of fabric attached memory

Hardware + software stack

The MDC Developer Experience

Developer Simplicity: Fewer data layers

Database System

Managed Data Structures

Cache Non-volatile Memory

Developer Simplicity: Fewer data layers

Conventional Data Formats

Data structures

Data format conversion

Serialization/deserialization

RPC, HTTP, message passing

Disk communication latency

Server

Database

File system

Disk

Data structures

Local function calls

Non-volatile memory

Shorter path to persistence

Less code

Fewer errors

Faster development

Decades of Zero Days Removed

Here is Edward Bear, coming downstairs now, bump, bump, bump, on the back of his head, behind Christopher Robin. It is, as far as he knows, the only way of coming downstairs, but sometimes he feels that there really is another way, if only he could stop bumping for a moment and think of it.

A. A. Milne, Winnie-the-Pooh

Performance demonstration – similarity search

From offline to decision time

Use cases:

Content-based image/video retrieval

Near-duplicate web page detection

Similar document retrieval

Outlier detection for e-commerce fraud mitigation

Fingerprint matching

Scalable object recognition

Nearest-neighbor classification

Performance demonstration – similarity search

Buying speed with persistent memory

Parameter	Disk-based	In-memory	Simulated Machine
Processing	20 commodity server nodes		20 SOCs with associated NVM
Feature vector memory	16 GB/node with "unlimited" hard drive space	As required to ho	ld image parameters
Index memory	None		Simulated NVM with 8x DRAM latency
Threads	32 threads/server node		32 threads/SOC
Problem	4 million images	80 million images	
Typical search time (5 images)	3 minutes	2 seconds	50 milliseconds

Disk-based

In-memory

Machine Learning that can keep up with the now

Training up-to-date deep neural networks in minutes, not weeks

Graph analytics time machine

Massive memory and fast fabrics to ingest all data

Complex models converge in minutes not days

What if we could pre-compute an almost infinite set of "what ifs"?

Optimization over a large search space in real time becomes realistic

Distributed Mesh Computing

Translator
Coordinator
Orchestrator
Arbitrator
Aggregator

Replicator
Anonymizer
Border guard
Learning engine

An internet of intelligent things

Only that intelligence is sent to the cloud Massive reduction in quantity of data Massive increase in **quality** of data

Broadening scale

A mesh of meshes

kirk.bresniker@hpe.com

