Rebooting Computing: Parallelism

Pete Beckman
Argonne National Laboratory &

Northwestern University

Parallelism Track

= |nnovation: What are the innovations needed for the exascale,
zettascale, and beyond regimes? These could include (but are
not limited to) energy efficiency, memory bandwidth, device
scaling, and packaging.

" Programming: How can parallel programming be made simpler?
Since Parallel computing is becoming ubiquitous, should parallel
programming be taught at an earlier stage?

= Other Computing: How can other computing trends such as
neuromorphic, approximate, and adiabatic computing affect the
future direction of parallelism?

a October 14

MPI Runs Successfully at Full Scale on the Largest
Supercomputers of Today

©RIKEN

T ———— — 5

'ﬁﬁi L]

e ———

_7
"""’ziﬁiiiailﬁll’ Ll

Example: HACC Cosmology Code

= HACC cosmology code from Argonne (Salman Habib) achieved
14 PFlops/s on Sequoia (Blue Gene/Q at LLNL)
— Ran on full Sequoia system using MPIl + OpenMP hybrid

— Used 16 MPI ranks * 4 OpenMP threads per rank on each node, which matches
the architecture: 16 cores per node with 4 hardware threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4 threads/rank

— http://www.hpcwire.com/hpcwire/2012-11-29/
sequoia supercomputer runs cosmology code at 14 petaflops.html

— SC12 Gordon Bell prize finalist

The HACC code has been used to run one of the
largest cosmological simulations ever, with
1.1 trillion particles

Will Computing Be Rebooted?

" Mira: Blue Gene/Q System
— 20 times faster than BG/P Intrepid (10 PF)
— ~4 times more power (~4 MW)

— ~5X more power efficient than BG/P

= Repeat twice to reach Exascale?

— 400 times faster than BG/Q Mira (4 EF)
— ~16 times more power (~64 MW)
— ~25X more power efficient than BG/Q

Infinite number of transistors only helps if they take zero energy

Data from Peter Kogge, Notre Dame

We’ve Hit a Power Ceiling Sockets and Cores Growing

1,000
1.E+07
;.”:T 1.E+06
S s e i
E 100 5 2 1.E+05
L = —
g — sl e w 1E+04
[o] g =) L
- = =y 2 - - 1.E+03
2 e v et, '.' - ’
= il b ae
s e LE+02
‘6 ol - li [}
] = B
= [= L 1.E+01
& "w [TR 1]
Ll I . LE+00
: g & & & &8 § s
e g g e e g g g < 5 s = e S s s
= = = = = = = = =
L - - - - -~ - - - = Total Sockets (H) @ Total Sockets (L) A Total Sockets (M)
0 Total Cores (H) O Total Cores (L) A Total Cores (M)
data from www.cpudb.stanford.edu
UNIVERSITY OF
NOTRE DAME 10,000
1,000
= =
= w
=3
-
Q
9
(8]
100
| I N |
- - =
- -
B
10
g g g g 8 8 g 8 £
= = = = = = = = =
- - - - - - - - -

data from www.cpudb.stanford.edu

ﬂ
8)

“f

UNIVERSITY OF

NOTRE DAME

Supercomputing in the Next 5-8 Years

Evolution toward exascale (x100 performance increase)

" Leverage continued evolution of CMQOS, advances in packaging
(3D stacks), and Non-volatile memory (NVRAM)

" |ncreased specialization of HPC technology

— Intel Phi + NIC + stacked memory, GPU + CPU + NIC, Fat ARM + lean
ARM + NIC

— Modify and reuse IP serving broader market but build unique chips
and unique packages

= Exascale in 2022 seems feasible;
— Possibly not for $200M and at 20 Mwatts

Observation: More Parallelism
More Hierarchy, More Complexity

a October 14

Looking forward by looking at
history for a moment

The 1990 Big Extinction: The Attack of the
Killer Micros (Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros

" Roadblock: bipolar circuits leaked too much current — it became too
hard to cool them (even with liquid nitrogen)

= MOS was leaking very little — did not require aggressive cooling
= MOS was used in fast growing markets: controllers, workstations, PCs

= MOS had a 20 year history and clear evolution path (“Moore’s Law”)
= MOS was slower

— Cray C90 vs. CM5 in 1991: 244 MHz vs. 32 MHz _
Courtesy Marc Snir

* Perfect example of “good
enough” technology

(Christensen, The

Innovator’s Dilemma)

¥ ~ 3 R~
3 October 14

The CMOS Age: Killer Micros, Moore’s Law & Dennard
Scaling (1990-2020 (?))

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3
Six-Core Core i7,

2,600000,000- T s
1,000,000,000 g AV S et ot
Itanium 2 with 9MB cacheA. \Corsei)i(;c(g:acd) teron 2400
100:000.0007 - Dennard Scaling:

= * Decrease feature size by a
S 10,000,000 count doubling every 8o pentium i
8 oyeers Lo factor of A and decrease
O
é 1,000,000 1 voltage by a factor of A; then
@ . .
= e # transistors increase by A?

100,000 .

* Clock speed increases by A
10,000 * Energy consumption does
2,300 nte o not Change
| | | | (in reality, voltage decrease was
1971 1980 1990 2000 2011 .
slower; clock speed and energy
Date of introducti . .

Courtesy Marc Snir e orinodueon consumption increased faster)

10
o October 14

The Future Is Not What It Was

30 \
= 25 (ITRS 2013 same as 2011, but stops at 2020)
£ 20 ITRS
3 . editions
@15 I ~-2005
< ""»‘_\“M
— Ny gy -#-2008
S 10 i ,
g b 2011
£ —t
Q. 5 -
0 |
2007 2009 2011 2013 2015 2017 2019 2021 2023 2025
Expected manufacturing year (courtesy J. Aidun)

"Herbert Stein's Law: "If something cannot go on
forever, it will stop,"

11
S 23 October 2014

Have We Been There?

" History repeats itself:
— CMOS technology has hit a power wall, same as ECL in late 80’es
e Clock speed is not raising

— Alternative materials are not ready (gallium arsenide and other IlI-V
materials; nanowires, nanotubes)

" History does not repeat itself:

¢/ There is a much larger industrial base investing in continued
improvements in current technologies

X An alternative “good enough” technology (such as MOS in 1990)

X There is much more code that needs to be rewritten if a new model
is needed (>200MLOCs)

12
5 October 14

Will there be another Mass Extinction?

What can we say for certain about the future?

Bet on Parallelism...
But What Kind of Parallelism?

13
A October 14

Temperature [C]

pkg0O(mean)
pkgl(mean)
pkgO(sd)
pkgl(sd)

100

200

300

400
Sec

500

600

700

800

Temperature [C]

90

80

~J
o

(@)
o

w
o

|

core00
core01l
core02
core03
core04
core05
core06
core07

100

200

300

400
Sec

500

600

700

800

16

Fault-Tolerance is Already Here

Patch Hyperbolic Integration Time
Cray XT4
180 T LI N B . B T T

BG/Q Water Temps ;Xz:;ave already seen the I |

*8 years ago in fact.

,_
3
=)
I
|

*Persistent ECC memory
faults are the norm, not the
exception
*Machines need to stay
up to satisfy their
contracts.
*Over the course of a
day or two these parts F 1
can be replaced, but

Time (seconds)

; . ‘ | ‘ .
not over the life of 140o 1000 2000 3000 4000 5000 6000 7000 8000
your batch job. Processor
U.8. DEEARTMEATOF Office of DOE Exascale Research Conference, April 16-18t, 2012

ENERGY Science
S From Brian Van Straalen October 14

Our Systems Are Adaptive...

But we don’t usually program that way:
We must re-imagine programming...

lﬁt_‘\ *
On Scalable Systems

Equal Work is not Equal Time

* Dynamic parallelism and decomposition
* We cannot hand-pick granularity / resource mapping
* Machine Learning?

The future is even more dynamic

Variability is the new norm:
Power * Seek new latency tolerant algorithms and methods.
Resilience

Intranode Contention .
* Create new tools that measure and predict latency

tolerance and execution distribution

18
o Pete Beckman Argonne National Laboratory / Northwestern University

This is not new...
Dynamic Lightweight Parallelism

But what will pervasive look like?

. \ . | m
PLASMA: Parallel Linear Algebra s/w for Charme++ tesy ‘
Multicore Architectures (the run-time and execution model))
=Objectives Parallelization Using Charm++

. e The computation is decomposed into “natural” objects of the application, which
— High utilization of each core

Cholesky are assigned to processors by Charm++ RTS

— Scaling to large number of cores Patch integration

— Shared or distributed memory ISP ----- P96
*Methodology .M ;‘::E

— Dynamic DAG scheduling S ot o : ". =

- Explicit parallelism « Charm++/AMPI style » &

— Implicit communication “virtual processors” L Ponto v

— Fine granularity / block data layout - D;compofsehinto nlatural P60 .» :0“] N NN

: : ; ; objects of the application g
'Arbit-rzii\'/&;G :V;{.h ﬂ‘aﬂc s;he“d:u_hhg - _ Le: the runtimer::ap them Benefits of Temperature Aware LB

Fork-join
= ====1 parallelism

to processors

— Decouple decomposition
from load balancing

DAG scheduled

parallelism c Jack .
Pete Beckman Argorﬁ’\%ﬁ%‘naﬂﬁ.a?&%ray"a' 13

&=

Distance # ﬁqag

al AII‘pOI’t

Human Learni

N\ ~AF. u
envulle* /SchiterRark | _
o UL —uﬁy DUNNING

ranklin Park

NORTH)|

WYQNDALE | LAKE VIEW

BELMONT
CRAGIN

FImwood Park

—(64F

Chicago commute one of nation's most

unpredictable, study suggests

February 05, 2013 | By Jon Hilkevitch, Chicago Tribune r

& [(o et 2

You can predict with a high degree of confidence
that the time it takes to drive from Point A to B
on any given day is unpredictable.

And it's not just snowy or rainy days. It can be
any day.

If there is a bright side, it's that Chicago was not

Traffic moy
the worst.

)

Wurr Ridge

a ﬁ

Melrose Park 50

t. AUSTIN WEST TO
(71) Oak Park
' I WEST SIDE
#—‘ﬁ—"—'u‘

MEDICAL——
NORTH. /Dlsrmcr

-_“.) ;- LAWNDALES— SOUTH\SIDE

Travel Time (Minutes)

http:/Avww travelmidweststats.com

-

' - Over 420 Million Travel Times Collected Since -
' October 2004 - All Presented In Real Time

70

65

60

55

50

45

P

40

35

.l 1

PR e —— e ——
20

15

22 222 2222222 dsggEaggegeggitse

Time Of Day

N |
Serious Cognitive Dissonance

Even Today, we have the “Dynamic Deniers”
(We want low runtime variance)
= Trinity/NERSC-8:

“The system shall provide correct and consistent runtimes. An
application’s runtime (i.e. wall clock time) shall not change by
more than 3% from run-to-run in dedicated mode and 5% in
production mode.”

21
o Pete Beckman Argonne National Laboratory / Northwestern University

Automatically Tuned
Linear Algebra Software
(ATLAS) 15 yrs ago...

500x500 Recursive BLLAS on

433Mhz DEC 21164

600

But static....

Level 3 BLAS On One Processor of a Sun UltraSparc

300
B Vendor BLAS B ATLAS/GEMM-based BLAS O Reference BLAS
250 1
200 1 ; T
- Multithreaded BLLAS for
a Performance
3 150 1 1 Pentium 11300 MHz
! 400 e By B
L 250 L/ ATLAS 1proc
: 200 VMW
50 1 : 133
50
0
0 - &8ss s
N 2]) L4))

o DGEMM DSYMM DSYR2K DSYRK

MergeSort PPU —+—

MergeSort 2/6 SPU recursive —+—

MergeSort 456 SPU recursive —+—
std::

X ===

QuickSort PP —+—
QuickSort 2/6 SPU —+—
QuickSort 4/6 SPU —e—

std::sort() —e—

o e

!
120000

Average Worst Memory Stable Method
Name Best Other notes
i = B =
Timsort — n log nn log n n Yes } ln:::::‘ng& fn comparisons when the data is already sorted.
Bubble sort n n? n’ 1 Yes Exchanging Tiny code
Cocktail sort — — n’ 1 Yes Exchanging
Comb sort — — — 1 No Exchanging meall code size
Gnome sort — - n'z 1 Yes Exchanging ngy code size
f | Fault?
) 2 2 2 ___ |Its stability depends on e
Selection sort n n n 1 No | Selection | .\ cafari o of . .
| | , Dynamic Execution?
: 2 2 ‘ | Average caseis also(
Insertion sort n n n 1 Yes | Insertion . .
numper ofinversions Pgra l |e| iIsm ?
Cycle sort — n2 n2 1 No Insertion iln-place with theoreticany vpurmar numuoer v wines
Shell sort - - |n log2 nl 1 No Insertion
Binary tree sort - |n log nn log n n Yes | Insertion CWhen using a self-balancing binary search tree
Library sort — |nlogn| p? n Yes | Insertion
mergesot nlogn nlogn nlogn Depends Yes & M. —— — - -
In-place mergesot,. — mlogn| nlogn 1 | Depends M | /\
Heapsot nlogn nlogn/ nlogn 1 No | Se
Smoothsort - — |nlogn 1 No l Se
auicksot nlogn nlogn| p»2 | logn Depends Par °
Introsort — Inlogn nlogn logn | N | F
Patience soting | — — |nlogn| n No ":;
Strand sort — |nlogn| p2 n | Yes | Se
Toumament sort — nlogn nlogn . Selection

Abstractions Matter

Question: Abstractions for the
Future Massively Parallel, Dynamic Machine?

Ignore Device Technology
Ignore Cartoons of future chips

Focus on Parallelism
Unpredictable Performance,
Interacting control systems
Unpredictable Fault

October 14

1 Adaptive Cruise Control

2 Electronic Brake System MK60E

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit
7 Sunroof
Control Unit

Driver EventData Active
Night Vision Alertness Recorder Cabin Noise Cabin Entertainment
indshiel Monitoring Auto-Dimming Suppression Environment System
Windshield Head-Up Mirror Controls
Wiper Control Display Accident . Battery
Recorder Interior Voice/Data B Management
Lighting Communications ShE Lan
e
Airbag Engine Instrument | a
Deployment Control Parental Cluster Correction
Controls Electronic
Adaptive Front \ P , Toll Collection
Lighting ‘ B — /))
- - Y - ___ Digital Turn Signals
Adaptive Cruise . 5
ya Navigation
w / ;
Shnrad ‘ \ (\ — System
Automatic .\)
Braking Security System
\ Active Exhaust
Electric | \ Noise Suppression
Power Steering)
OBDII Electronic|| Amtlock fetive Suspension
Electronic Throttle Jransmission d Hill-Hold
Control e Control Stability Control
ntrol stop/Start |\ Remote Control on
Ele;:;m-c Vibration Keyless 5“;":‘:]‘”“ Parking Regenerative
Control ~ Entry L Tire Braking
Timing Lane System
Cylinder Blindspot Departure Active Pressure
De-activation Detection Warning Yaw Monitoring
Control

8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

14 Airbag Control Unit

30
October 14

Getting OpenMP Up To Speed

International Workshop

IWOMP 2010
CCS, University of Tsukuba
Tsukuba, Japan
June 14-16, 2010 e e
weme

OpenMP and Performance N2

Q The transparency of OpenMP is a mixed blessing

e Makes things pretty easy
e May mask performance botitlenecks

- a[50] Q In the ideal world, an OpenMP application just performs
Processor Processor a[;9] we I I

Q Unfortunately, this is not the case

IWO

About “First Touch” placement/2 R

a[o]
’.
a[49]

fpragma omp parallel for num_threads(2) O Two of the more obscure effects that can negativel
for (i=0; i<100; i++) impact performance are cc-NUMA behavior and False
EIEIREE0) Sharing

Q Neither of these are restricted to OpenMP, but they are

] rtant enough t ver in som tail her

. IWOM
A 3D matrix update B
dok=2,n
do j=2, n
'Somp parallel do default(shared) private(i) &
!Somp schedule(static)
doi=1,m
x(i,j,k) = x(1i,j,k-1) + x(i,j-1,k)*scale
end do . a - '
!Somp end parallel do Thls IS False Sharlng at WOI'k =
end do
end do [
File View Timeline Selected Function/Load-Object: _mt_EndOfTask_Barrier Help
== " mm Fna Text: Lla®
Functons | Catlers.Catiees Saurce. Diassembty | Tmeiine | e
IWOMP - I
The performance B ' s
Timestamp (sec.): :l .714454
LwP: 2
350 Scaling is very poor —— L e
— | 300 Inner loop over I has (as to be expected) | _ e e e
] been parallelized __mt_EndOfTask_Barrier :E'-%:H;;Fﬁ:_nm e 14
E- 250 tForWork ’ T
S ‘ [e n||KL Se—
S a0 - TGN I
8 | Performance Analyzer data o
1]
E
,§ 100 ene Using 10 threads LT LR e
sec. % sec. sec.
n‘: 50 <Total> 10.590 100.0 10.590 1.550
__mt _EndOfTask Barrier_ 5.740 54.2 5.740 0.240
0 " mt_WaitForWork_ > 3.860 36.4 3.860 0
0 0 20 30 40 50 60| | o ooesen _ 0,230 2.2 1,200 0.470
block 3d -- doall £ 14 14 $d1A14 ! - 0.170 1.6 5.910 0.17
Number of threads b1:ck:3d: 1 domLl rom dime 4 L w® |~ 00t 0.4 6460 o.080
memset g "‘-u' 0.030 0.3 0.030 0.080
N H -8 % Excl. U Incl Excl
Using 20 threads 8 e L
n sec. % sec. sec.
<Total> 47.120 100.0 47.120 2.900
__mt _EndOfTask Barrier_ > 25.700 54.5 25.700 0.980
__mt_WaitForWork_ 19.880 42.2 19.880 0.
__mt MasterFunction_ 1.100 2.3 1.320 1.100
MAIN_ 0.190 0.4 2.520 0.470
block_3d_ -- MP doall from line 14 [_Sdlul.block_Sd_] 0.100 0.2 25.800 0.100
__mt_setup_doJob_int_ 0.080 0.2 0.080 0.080
“mt_setup_job_ 0.020 0.0 0.020 0.020
block_3d_ 0.010 0.0 27.020 0.010
S Question: Why is __mt_WaitForWork so high in the prof le ? . . 32
Pete Beckman Ar Jniversity

Component-Level Variability
Amplified By Scale

A common technique for reducing la-
tency in large-scale online services is to
parallelize sub-operations across many
different machines, where each sub-op-
eration is co-located with its portion of
a large dataset. Parallelization happens
by fanning out a request from a root to
a large number of leaf servers and merg-
ing responses via a request-distribution
tree. These sub-operations must all
complete within a strict deadline for the

Reducing Component Variability

Interactive response-time variability
can be reduced by ensuring interactive
requests are serviced in a timely manner

Living with Latency Variability

The careful engineering techniques in
the preceding section are essential for
building high-performance interactive
services, but the scale and complexity
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could

Google (re-discovers) Noise

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

’ BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

service latency > 1s)

P(

o O o 9o o o o
w » U1 N o ©

0.2

o
o =

=== 1in100 === 1in1000 === 1in10,000

/

/7

/

-~

Fault-Tolerance is Already Here

Patch Hyperbolic Integration Time
Cray XT4

*We have already seen the
future

*8 years ago in fact.

faults are the norm, not the

500

° 160
exception

*Machines need to stay

up to satisfy their

contracts. F 150
*Over the course of a

day or two these parts

can be replaced, but

not over the life of 05— w‘ov 20‘00 so‘oo 40|00 ' SD‘M so‘oo 7000 8000
your batch job. Processor

¥)
)
=]
=)
*Persistent ECC memory 8
Q
%)
N
Q

uuuuuuuuuuuu Office of

ENERGY Science

DOE Exascale Research Conference, April 16-18", 2012

What Next?

October 14

To Reboot Computing

= We must reboot our machine abstractions
— Dynamic control system
e run-time view of large programs?
— Data flow?

— Power, Fault, Variation as first class design pieces.

" Change Programming to be parallel everywhere

" Prepare for exotic technology to force a mass extinction

a October 14

35

What Prevents Scalability?

= |nsufficient parallelism

= |Insufficient latency hiding

= |nsufficient resources (Memory, BW, Flops)

Pete Beckman Argonne National Laboratory / Northwestern University

36

What Prevents Scalability?

= |nsufficient parallelism

— As the problem scales, more parallelism must be found

= |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

Pete Beckman Argonne National Laboratory / Northwestern University

37

