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Parallelism Track

= |nnovation: What are the innovations needed for the exascale,
zettascale, and beyond regimes? These could include (but are
not limited to) energy efficiency, memory bandwidth, device
scaling, and packaging.

" Programming: How can parallel programming be made simpler?
Since Parallel computing is becoming ubiquitous, should parallel
programming be taught at an earlier stage?

= Other Computing: How can other computing trends such as
neuromorphic, approximate, and adiabatic computing affect the
future direction of parallelism?
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MPI Runs Successfully at Full Scale on the Largest
Supercomputers of Today
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Example: HACC Cosmology Code

=  HACC cosmology code from Argonne (Salman Habib) achieved
14 PFlops/s on Sequoia (Blue Gene/Q at LLNL)
— Ran on full Sequoia system using MPIl + OpenMP hybrid

— Used 16 MPI ranks * 4 OpenMP threads per rank on each node, which matches
the architecture: 16 cores per node with 4 hardware threads each

— ~ 6.3 million way concurrency: 1,572,864 MPI ranks * 4 threads/rank

— http://www.hpcwire.com/hpcwire/2012-11-29/
sequoia supercomputer runs cosmology code at 14 petaflops.html

— SC12 Gordon Bell prize finalist

The HACC code has been used to run one of the
largest cosmological simulations ever, with
1.1 trillion particles




Will Computing Be Rebooted?

" Mira: Blue Gene/Q System
— 20 times faster than BG/P Intrepid (10 PF)
— ~4 times more power (~4 MW)

— ~5X more power efficient than BG/P

= Repeat twice to reach Exascale?

— 400 times faster than BG/Q Mira (4 EF)
— ~16 times more power (~64 MW)
— ~25X more power efficient than BG/Q

Infinite number of transistors only helps if they take zero energy



Data from Peter Kogge, Notre Dame

We’ve Hit a Power Ceiling Sockets and Cores Growing

1,000
1.E+07
;.”:T 1.E+06
S s e i
E 100 5 2 1.E+05
L = —
g — sl e w 1E+04
[o] g = ) L
- = =y 2 - - 1.E+03
2 e v et, '.' - ’
= il b ae
s e LE+02
‘6 ol - li [}
] = B
= [ = L 1.E+01
& "w [ TR 1]
Ll I . LE+00
: g & & & &8 § s
e g g e e g g g < 5 s = e S s s
= = = = = = = = =
L - - - - -~ - - - = Total Sockets (H) @ Total Sockets (L) A Total Sockets (M)
0 Total Cores (H) O Total Cores (L) A Total Cores (M)
data from www.cpudb.stanford.edu
UNIVERSITY OF
NOTRE DAME 10,000
1,000
= =
= w
=3
-
Q
9
(8]
100
| I N |
- - =
- -
B
10
g g g g 8 8 g 8 £
= = = = = = = = =
- - - - - - - - -

data from www.cpudb.stanford.edu

ﬂ
8)

“f

UNIVERSITY OF

NOTRE DAME




Supercomputing in the Next 5-8 Years

Evolution toward exascale (x100 performance increase)

" Leverage continued evolution of CMQOS, advances in packaging
(3D stacks), and Non-volatile memory (NVRAM)

" |ncreased specialization of HPC technology

— Intel Phi + NIC + stacked memory, GPU + CPU + NIC, Fat ARM + lean
ARM + NIC

— Modify and reuse IP serving broader market but build unique chips
and unique packages

= Exascale in 2022 seems feasible;
— Possibly not for $200M and at 20 Mwatts

Observation: More Parallelism
More Hierarchy, More Complexity
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Looking forward by looking at
history for a moment



The 1990 Big Extinction: The Attack of the
Killer Micros  (Eugene Brooks, 1990)

Shift from bipolar vector machines & to clusters of MOS micros

" Roadblock: bipolar circuits leaked too much current — it became too
hard to cool them (even with liquid nitrogen)

= MOS was leaking very little — did not require aggressive cooling
= MOS was used in fast growing markets: controllers, workstations, PCs

= MOS had a 20 year history and clear evolution path (“Moore’s Law”)
= MOS was slower

— Cray C90 vs. CM5 in 1991: 244 MHz vs. 32 MHz _
Courtesy Marc Snir

* Perfect example of “good
enough” technology

(Christensen, The

Innovator’s Dilemma)

¥ ~ 3 R~
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The CMOS Age: Killer Micros, Moore’s Law & Dennard
Scaling (1990-2020 (?))

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3
Six-Core Core i7,

2,600000,000- T s
1,000,000,000 g AV S et ot
Itanium 2 with 9MB cacheA. \Corsei)i(;c(g:acd) teron 2400
100:000.0007 - Dennard Scaling:

= * Decrease feature size by a
S 10,000,000 count doubling every 8o pentium i
8 oyeers Lo factor of A and decrease
O
é 1,000,000 1 voltage by a factor of A; then
@ . .
= e # transistors increase by A?

100,000 .

* Clock speed increases by A
10,000 * Energy consumption does
2,300 nte o not Change
| | | | (in reality, voltage decrease was
1971 1980 1990 2000 2011 .
slower; clock speed and energy
Date of introducti . .

Courtesy Marc Snir e orinodueon consumption increased faster)
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The Future Is Not What It Was
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"Herbert Stein's Law: "If something cannot go on
forever, it will stop,"
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Have We Been There?

" History repeats itself:
— CMOS technology has hit a power wall, same as ECL in late 80’es
e Clock speed is not raising

— Alternative materials are not ready (gallium arsenide and other IlI-V
materials; nanowires, nanotubes)

" History does not repeat itself:

¢/ There is a much larger industrial base investing in continued
improvements in current technologies

X An alternative “good enough” technology (such as MOS in 1990)

X There is much more code that needs to be rewritten if a new model
is needed (>200MLOCs)
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Will there be another Mass Extinction?

What can we say for certain about the future?

Bet on Parallelism...
But What Kind of Parallelism?
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Fault-Tolerance is Already Here

Patch Hyperbolic Integration Time
Cray XT4
180 T LI N B . B T T

BG/Q Water Temps ;Xz:;ave already seen the I |

*8 years ago in fact.
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3
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*Persistent ECC memory
faults are the norm, not the
exception
*Machines need to stay
up to satisfy their
contracts.
*Over the course of a
day or two these parts F 1
can be replaced, but

Time (seconds)

; . ‘ | ‘ .
not over the life of 140o 1000 2000 3000 4000 5000 6000 7000 8000
your batch job. Processor
U.8. DEEARTMEATOF Office of DOE Exascale Research Conference, April 16-18t, 2012

ENERGY Science
S From Brian Van Straalen October 14




Our Systems Are Adaptive...

But we don’t usually program that way:
We must re-imagine programming...

lﬁt_‘\ *
On Scalable Systems

Equal Work is not Equal Time

* Dynamic parallelism and decomposition
* We cannot hand-pick granularity / resource mapping
* Machine Learning?

The future is even more dynamic

Variability is the new norm:
Power * Seek new latency tolerant algorithms and methods.
Resilience

Intranode Contention .
* Create new tools that measure and predict latency

tolerance and execution distribution

18
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This is not new...
Dynamic Lightweight Parallelism

But what will pervasive look like?

. \ . | m
PLASMA: Parallel Linear Algebra s/w for Charme++ tesy ‘
Multicore Architectures (the run-time and execution model) )
=Objectives Parallelization Using Charm++

. e The computation is decomposed into “natural” objects of the application, which
— High utilization of each core

Cholesky are assigned to processors by Charm++ RTS

— Scaling to large number of cores Patch integration

— Shared or distributed memory ISP ----- P96
*Methodology .M ;‘::E

— Dynamic DAG scheduling S ot o : ". =

- Explicit parallelism « Charm++/AMPI style » &

— Implicit communication “virtual processors” L Ponto v

— Fine granularity / block data layout - D;compofsehinto nlatural P60 .» :0“ ] N NN

: : ; ; objects of the application g
'Arbit-rzii\'/&;G :V;{.h ﬂ‘aﬂc s;he“d:u_hhg - _ Le: the runtimer::ap them Benefits of Temperature Aware LB

Fork-join
= ====1 parallelism

to processors

— Decouple decomposition
from load balancing

DAG scheduled

parallelism c Jack .
Pete Beckman Argorﬁ’\%ﬁ%‘naﬂﬁ.a?&%ray"a' 13
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You can predict with a high degree of confidence
that the time it takes to drive from Point A to B
on any given day is unpredictable.

And it's not just snowy or rainy days. It can be
any day.
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N |
Serious Cognitive Dissonance

Even Today, we have the “Dynamic Deniers”
(We want low runtime variance)
= Trinity/NERSC-8:

“The system shall provide correct and consistent runtimes. An
application’s runtime (i.e. wall clock time) shall not change by
more than 3% from run-to-run in dedicated mode and 5% in
production mode.”
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Automatically Tuned
Linear Algebra Software
(ATLAS) 15 yrs ago...

500x500 Recursive BLLAS on

433Mhz DEC 21164

600

But static....

Level 3 BLAS On One Processor of a Sun UltraSparc

300
B Vendor BLAS B ATLAS/GEMM-based BLAS O Reference BLAS
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MergeSort PPU —+—

MergeSort 2/6 SPU recursive —+—

MergeSort 456 SPU recursive —+—
std::

X ===

QuickSort PP —+—
QuickSort 2/6 SPU —+—
QuickSort 4/6 SPU —e—

std::sort() —e—

o e

!
120000

Average Worst Memory Stable  Method
Name Best Other notes
i = B =
Timsort — n log nn log n n Yes } ln:::::‘ng& fn comparisons when the data is already sorted.
Bubble sort n n? n’ 1 Yes  Exchanging Tiny code
Cocktail sort — — n’ 1 Yes  Exchanging
Comb sort — — — 1 No  Exchanging meall code size
Gnome sort — - n'z 1 Yes Exchanging ngy code size
f | Fault?
) 2 2 2 ___ |Its stability depends on e
Selection sort n n n 1 No | Selection | .\ cafari o of . .
| | , Dynamic Execution?
: 2 2 ‘ | Average caseis also(
Insertion sort n n n 1 Yes | Insertion . .
numper ofinversions  Pgra l |e| iIsm ?
Cycle sort — n2 n2 1 No Insertion iln-place with theoreticany vpurmar numuoer v wines
Shell sort - - |n log2 nl 1 No Insertion
Binary tree sort - |n log nn log n n Yes | Insertion CWhen using a self-balancing binary search tree
Library sort — |nlogn| p? n Yes | Insertion
mergesot  nlogn nlogn nlogn Depends Yes & M. —— — - -
In-place mergesot,. — mlogn| nlogn 1 | Depends M | /\
Heapsot  nlogn nlogn/ nlogn 1 No | Se
Smoothsort - — |nlogn 1 No l Se
auicksot  nlogn nlogn| p»2 | logn Depends Par °
Introsort — Inlogn nlogn logn | N | F
Patience soting | — — |nlogn| n No ":;
Strand sort — |nlogn| p2 n | Yes | Se
Toumament sort — nlogn nlogn . Selection




Abstractions Matter







Question: Abstractions for the
Future Massively Parallel, Dynamic Machine?

Ignore Device Technology
Ignore Cartoons of future chips

Focus on Parallelism
Unpredictable Performance,
Interacting control systems
Unpredictable Fault

October 14












1 Adaptive Cruise Control

2 Electronic Brake System MK60E

3 Sensor Cluster

4 Gateway Data Transmitter

5 Force Feedback
Accelerator Pedal

6 Door Control Unit
7 Sunroof
Control Unit

Driver EventData Active
Night Vision Alertness Recorder Cabin Noise Cabin Entertainment
indshiel Monitoring Auto-Dimming Suppression Environment System
Windshield Head-Up Mirror Controls
Wiper Control Display Accident . Battery
Recorder Interior Voice/Data B Management
Lighting Communications ShE Lan
e
Airbag Engine Instrument | a
Deployment  Control  Parental Cluster Correction
Controls Electronic
Adaptive Front \ P , Toll Collection
Lighting ‘ B — / ) )
- - Y - ___ Digital Turn Signals
Adaptive Cruise . 5
ya Navigation
w / ;
Shnrad ‘ \  ( \ — System
Automatic .\ )
Braking Security System
\ Active Exhaust
Electric | \ Noise Suppression
Power Steering )
OBDII Electronic|| Amtlock fetive Suspension
Electronic Throttle Jransmission d Hill-Hold
Control e Control Stability Control
ntrol stop/Start |\ Remote Control on
Ele;:;m-c Vibration Keyless 5“;":‘:]‘”“ Parking Regenerative
Control ~ Entry L Tire Braking
Timing Lane System
Cylinder Blindspot Departure Active Pressure
De-activation Detection Warning Yaw Monitoring
Control

8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

14 Airbag Control Unit

30
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Getting OpenMP Up To Speed

International Workshop

IWOMP 2010
CCS, University of Tsukuba
Tsukuba, Japan
June 14-16, 2010 e e
weme

OpenMP and Performance N2

Q The transparency of OpenMP is a mixed blessing

e Makes things pretty easy
e May mask performance botitlenecks

- a[50] Q In the ideal world, an OpenMP application just performs
Processor Processor a[ ;9 ] we I I

Q Unfortunately, this is not the case

IWO

About “First Touch” placement/2 R

a[o]
’.
a[49]

fpragma omp parallel for num_threads(2) O Two of the more obscure effects that can negativel
for (i=0; i<100; i++) impact performance are cc-NUMA behavior and False
EIEIREE0) Sharing

Q Neither of these are restricted to OpenMP, but they are

] rtant enough t ver in som tail her



. IWOM
A 3D matrix update B
dok=2,n
do j=2, n
'Somp parallel do default(shared) private(i) &
!Somp schedule(static)
doi=1,m
x(i,j,k) = x(1i,j,k-1) + x(i,j-1,k)*scale
end do . a - '
!Somp end parallel do Thls IS False Sharlng at WOI'k =
end do
end do [
File View Timeline Selected Function/Load-Object: _mt_EndOfTask_Barrier Help
== " mm Fna Text: Lla®
Functons | Catlers.Catiees Saurce. Diassembty | Tmeiine | e
IWOMP - I
The performance B ' s
Timestamp (sec.): :l .714454
LwP: 2
350 Scaling is very poor —— L e
— | 300 Inner loop over I has (as to be expected) | _ e e e
] been parallelized __mt_EndOfTask_Barrier :E'-%:H;;Fﬁ:_nm e 14
E- 250 tForWork ’ T
S ‘ [ e n||KL Se—
S a0 - TGN I
8 | Performance Analyzer data o
1]
E
,§ 100 ene Using 10 threads LT LR e
sec. % sec. sec.
n‘: 50 <Total> 10.590 100.0 10.590 1.550
__mt _EndOfTask Barrier_ 5.740 54.2 5.740 0.240
0 " mt_WaitForWork_ > 3.860 36.4 3.860 0
0 0 20 30 40 50 60| | o ooesen _ 0,230 2.2 1,200 0.470
block 3d -- doall £ 14 14 $d1A14 ! - 0.170 1.6 5.910 0.17
Number of threads b1:ck:3d: 1 domLl rom dime 4 L w® |~ 00t 0.4 6460 o.080
memset g "‘-u' 0.030 0.3 0.030 0.080
N H -8 % Excl. U Incl Excl
Using 20 threads 8 e L
n sec. % sec. sec.
<Total> 47.120 100.0 47.120 2.900
__mt _EndOfTask Barrier_ > 25.700 54.5 25.700 0.980
__mt_WaitForWork_ 19.880 42.2 19.880 0.
__mt MasterFunction_ 1.100 2.3 1.320 1.100
MAIN_ 0.190 0.4 2.520 0.470
block_3d_ -- MP doall from line 14 [_Sdlul.block_Sd_] 0.100 0.2 25.800 0.100
__mt_setup_doJob_int_ 0.080 0.2 0.080  0.080
“mt_setup_job_ 0.020 0.0 0.020  0.020
block_3d_ 0.010 0.0 27.020 0.010
S Question: Why is __mt_WaitForWork so high in the prof le ? . . 32
Pete Beckman Ar Jniversity




Component-Level Variability
Amplified By Scale

A common technique for reducing la-
tency in large-scale online services is to
parallelize sub-operations across many
different machines, where each sub-op-
eration is co-located with its portion of
a large dataset. Parallelization happens
by fanning out a request from a root to
a large number of leaf servers and merg-
ing responses via a request-distribution
tree. These sub-operations must all
complete within a strict deadline for the

Reducing Component Variability

Interactive response-time variability
can be reduced by ensuring interactive
requests are serviced in a timely manner

Living with Latency Variability

The careful engineering techniques in
the preceding section are essential for
building high-performance interactive
services, but the scale and complexity
of modern Web services make it infea-
sible to eliminate all latency variabil-
ity. Even if such perfect behavior could

Google (re-discovers) Noise

Software techniques that tolerate latency
variability are vital to building responsive
large-scale Web services.

’ BY JEFFREY DEAN AND LUIZ ANDRE BARROSO

The Tail
at Scale

Probability of one-second service-level response time as the system scales and frequency
of server-level high-latency outliers varies.

service latency > 1s)

P(

o O o 9o o o o
w » U1 N o ©

0.2

o
o =

=== 1in100 === 1in1000 === 1in10,000

/

/7

/

-~

Fault-Tolerance is Already Here

Patch Hyperbolic Integration Time
Cray XT4

*We have already seen the
future

*8 years ago in fact.

faults are the norm, not the

500

° 160
exception

*Machines need to stay

up to satisfy their

contracts. F 150
*Over the course of a

day or two these parts

can be replaced, but

not over the life of 05— w‘ov 20‘00 so‘oo 40|00 ' SD‘M so‘oo 7000 8000
your batch job. Processor

¥ )
)
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*Persistent ECC memory 8
Q
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ENERGY Science

DOE Exascale Research Conference, April 16-18", 2012




What Next?
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To Reboot Computing

= We must reboot our machine abstractions
— Dynamic control system
e run-time view of large programs?
— Data flow?

— Power, Fault, Variation as first class design pieces.

" Change Programming to be parallel everywhere

" Prepare for exotic technology to force a mass extinction

a October 14
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What Prevents Scalability?

= |nsufficient parallelism

= |Insufficient latency hiding

= |nsufficient resources (Memory, BW, Flops)

Pete Beckman Argonne National Laboratory / Northwestern University
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What Prevents Scalability?

= |nsufficient parallelism

— As the problem scales, more parallelism must be found

= |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

Pete Beckman Argonne National Laboratory / Northwestern University
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