An In-Depth Look at Baidu's Al Aspirations

JULIA LI

NEWSHA ARDALANI

百度一下

910

Bai 也大脑 Baidu Brain

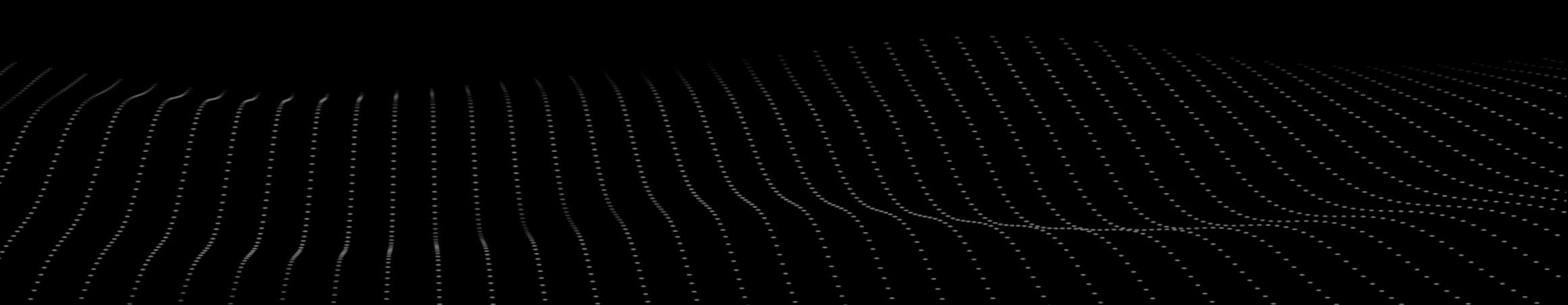
AI&HPC

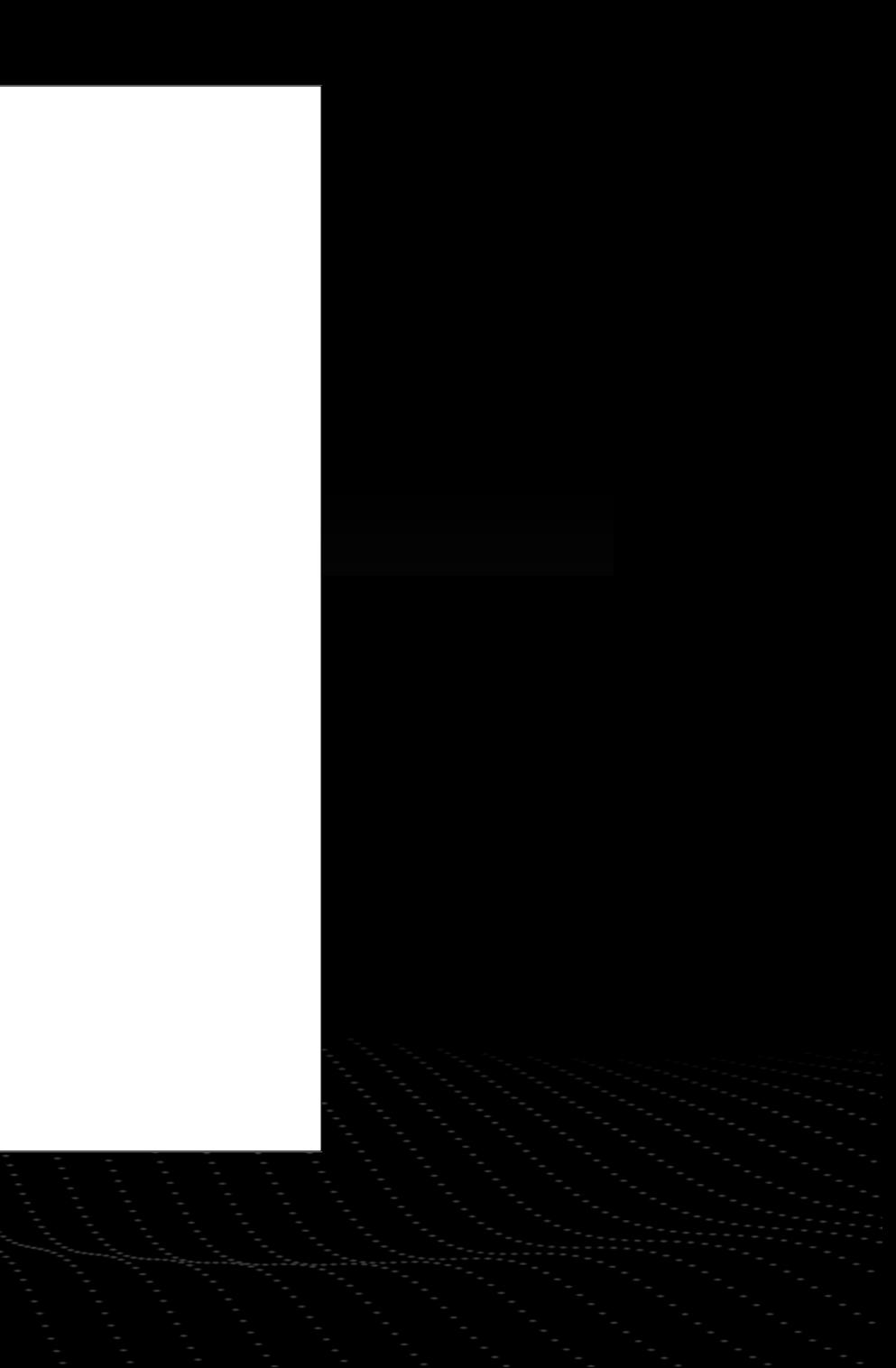
Make communication easier

- Speech Recognition
- Text-to-Speech Synthesis
- Simultaneous Translation
- Language Model

Make AI faster

High Performance Computing

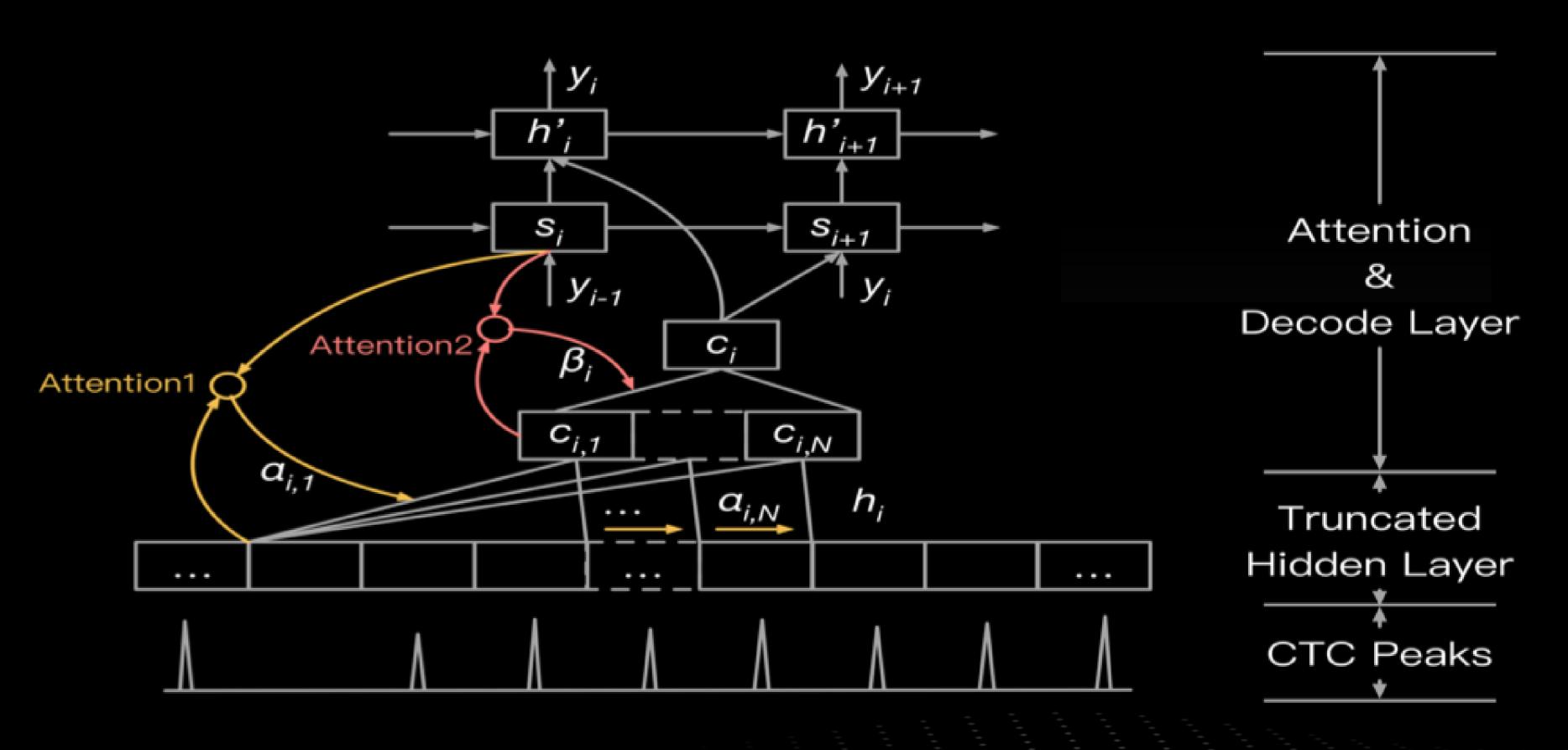




Speech Recognition Model — SMLTA

Features

- Streaming
- Multi-layer Neural Network
- Large Data Code Switching

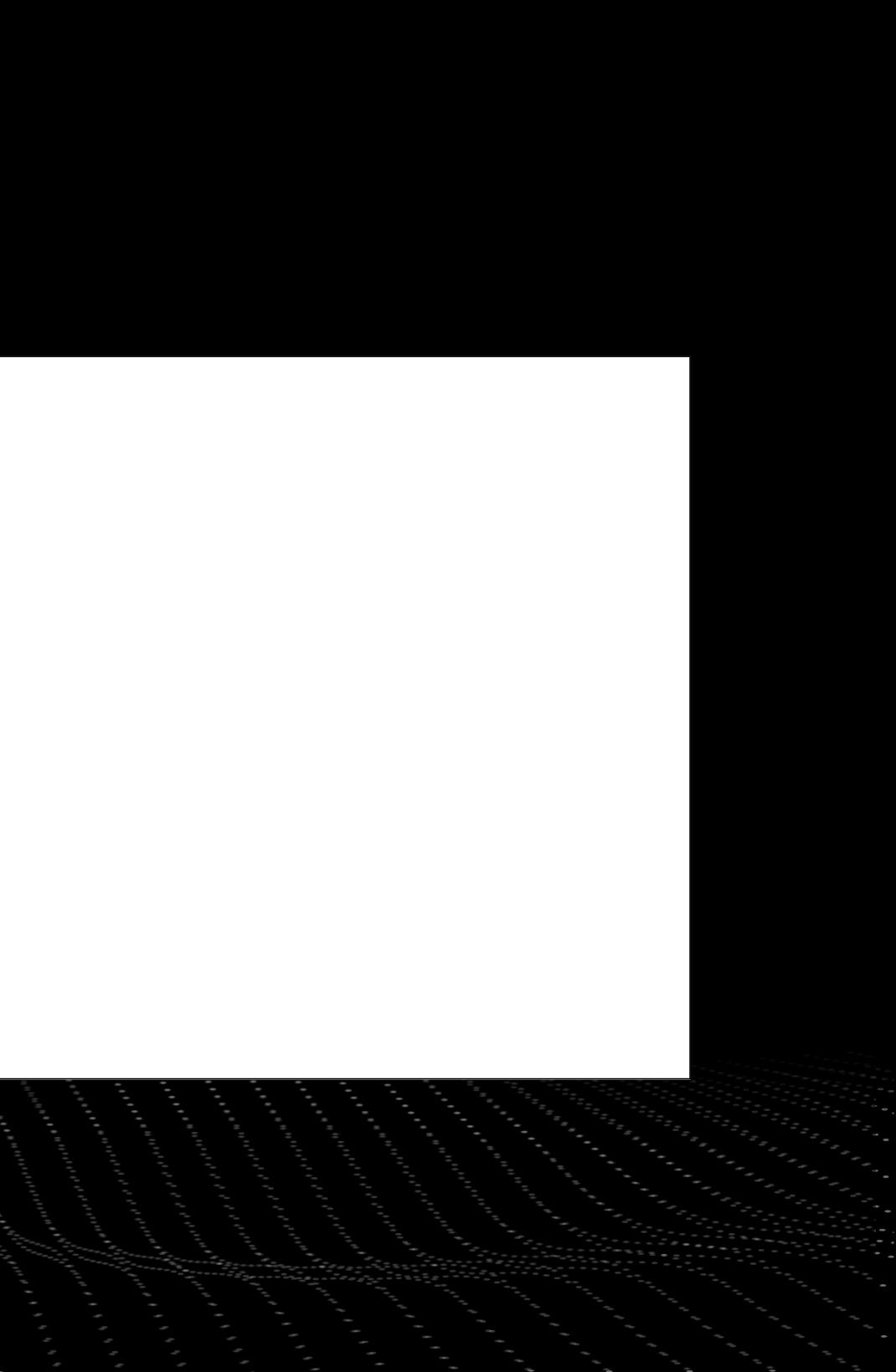


Tech blog: research.baidu.com/Blog/index-view?id=109

Text-to-Speech Synthesis (TTS)

a a a o ososadetentos

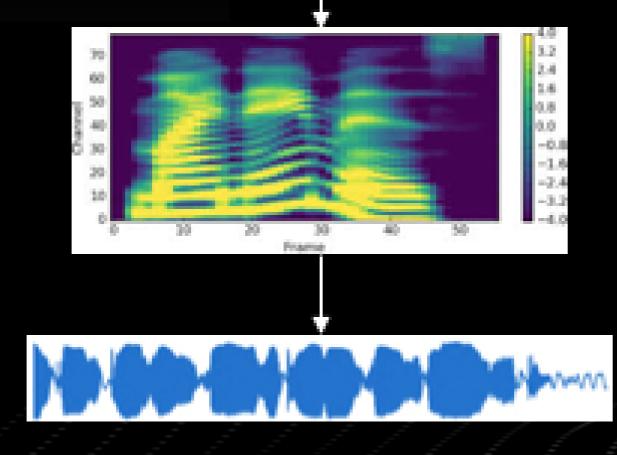
ſ

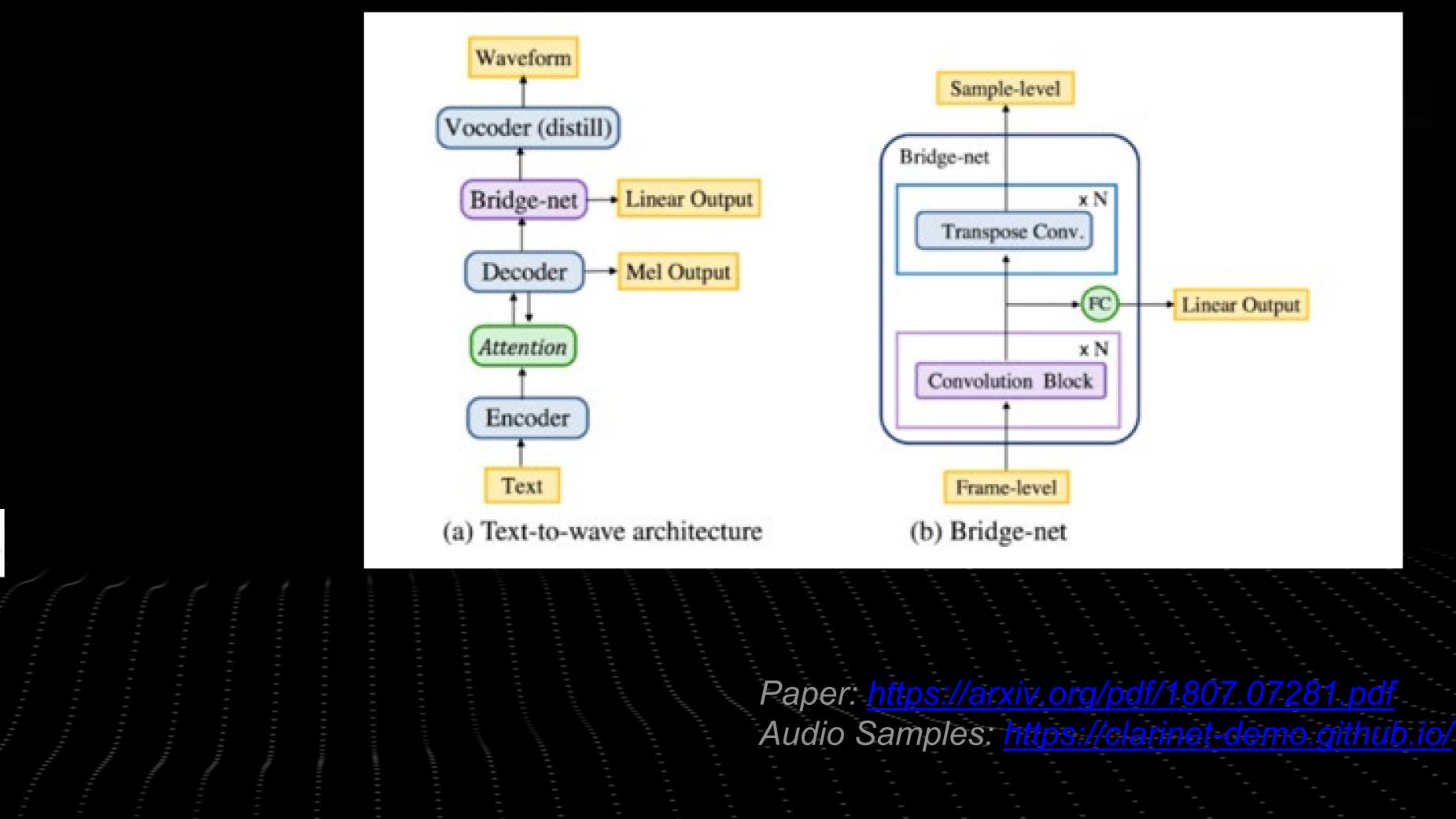


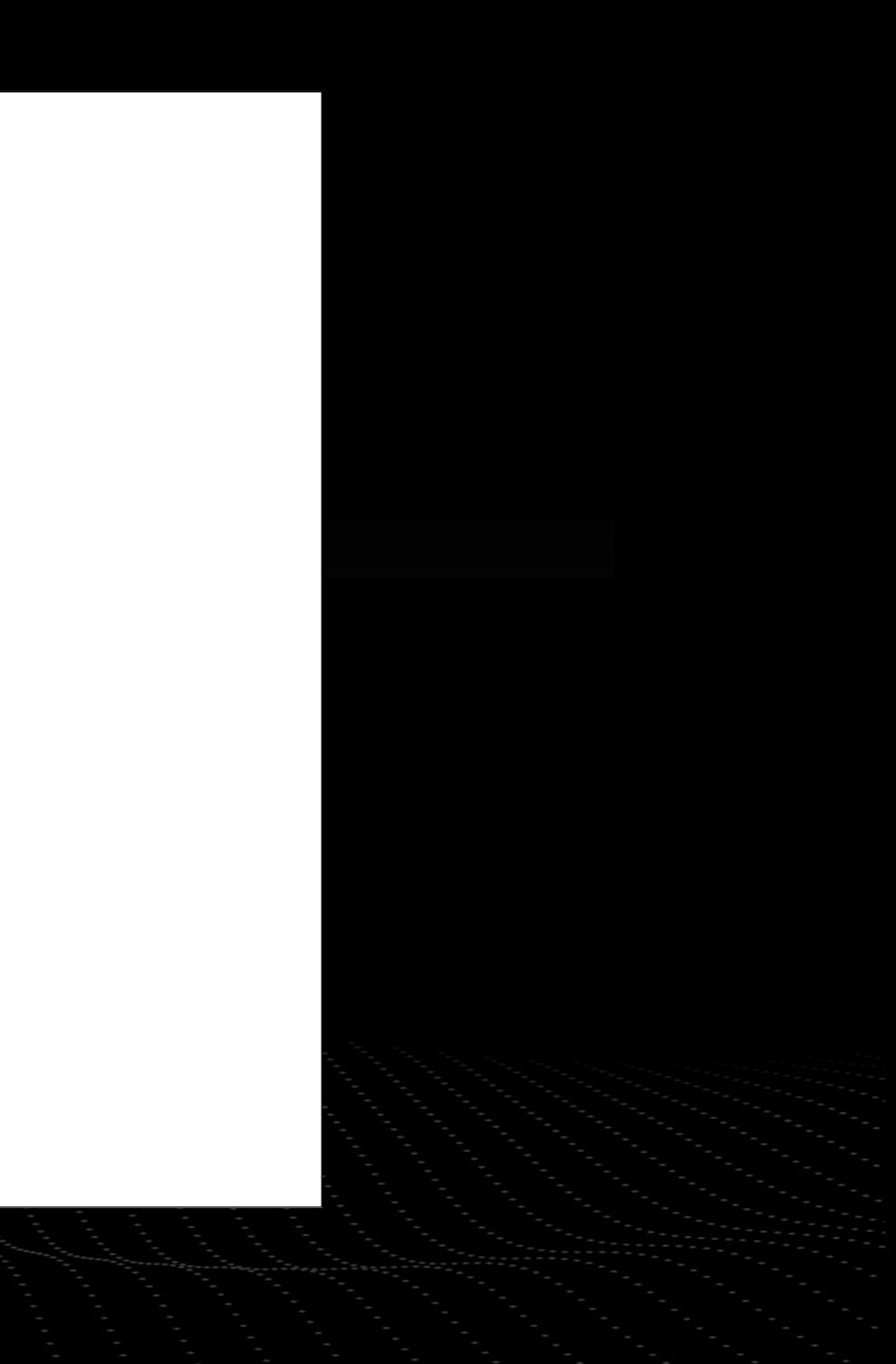
TTS Model — Clarinet

A Fully End-To-End Neural Network Model

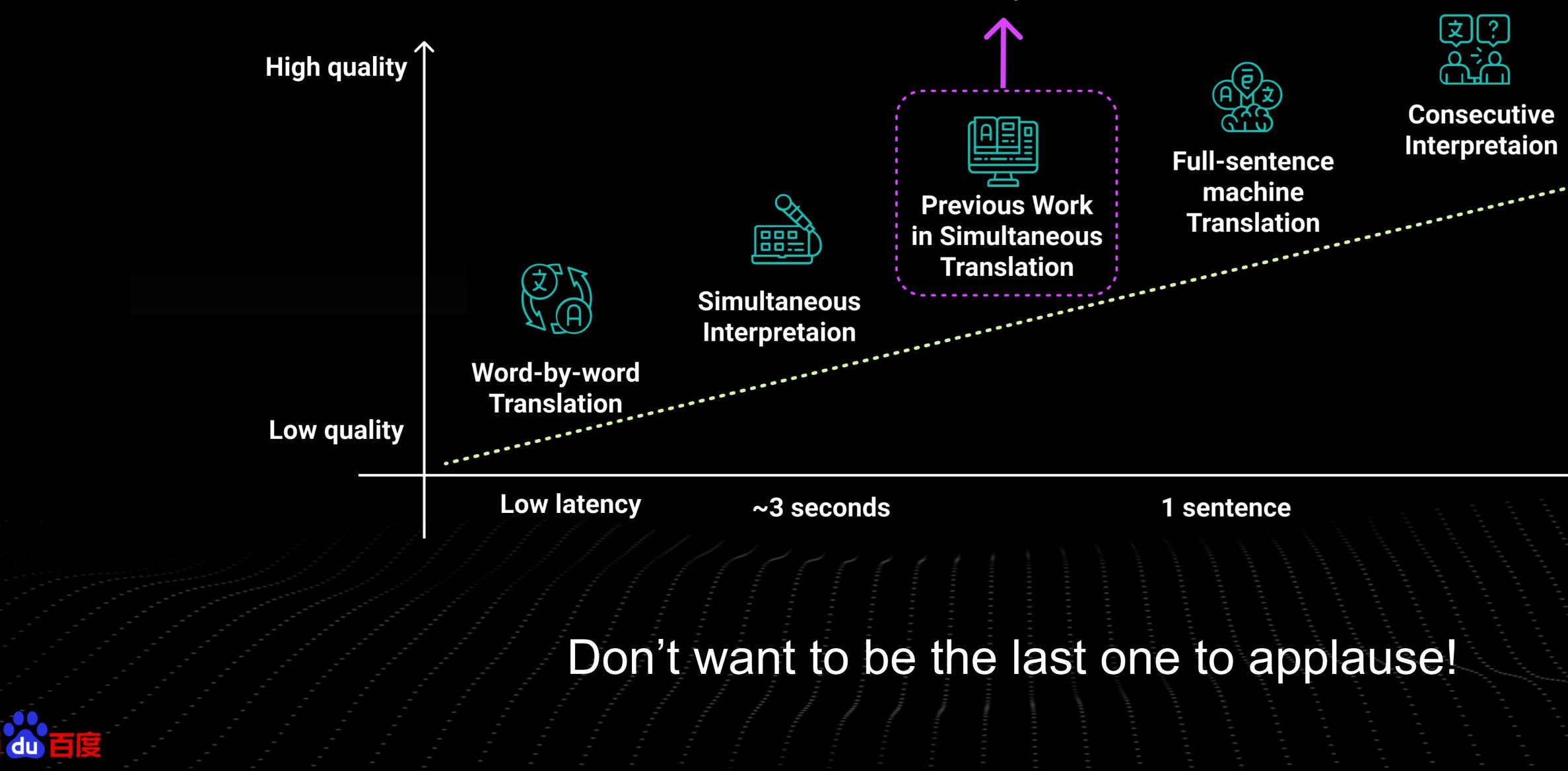
Text Phonemes



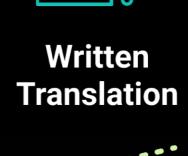




Tradeoff between Latency and Quality



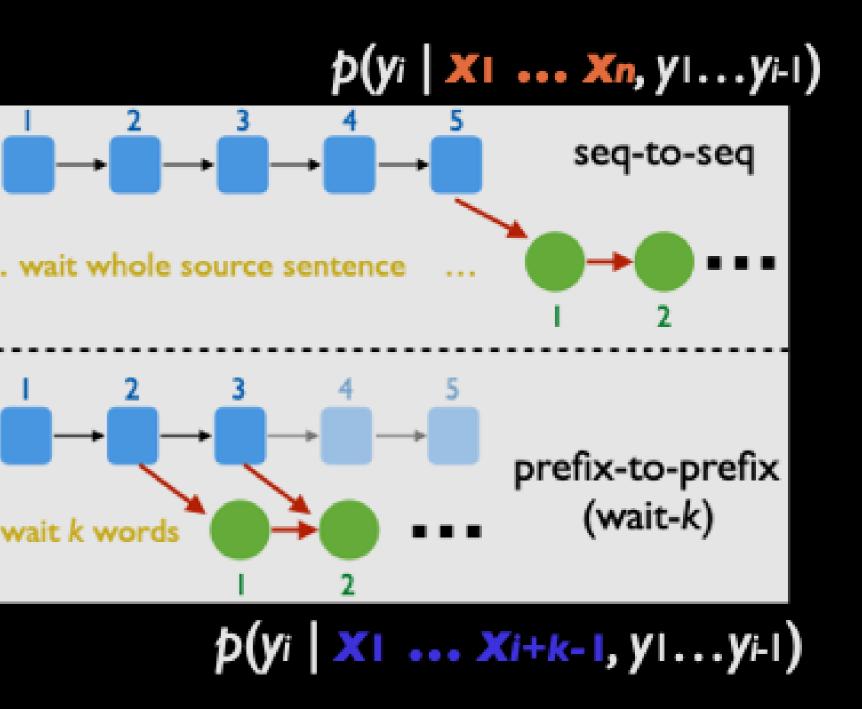
One of Al's Holy Grails Needs Fundamentally New Ideas!



Simultaneous Translation Model — STACL

A prefix-to-prefix framework

Controlable latency



source:

target:

source:

target:

Natural Language Processing

Challenge

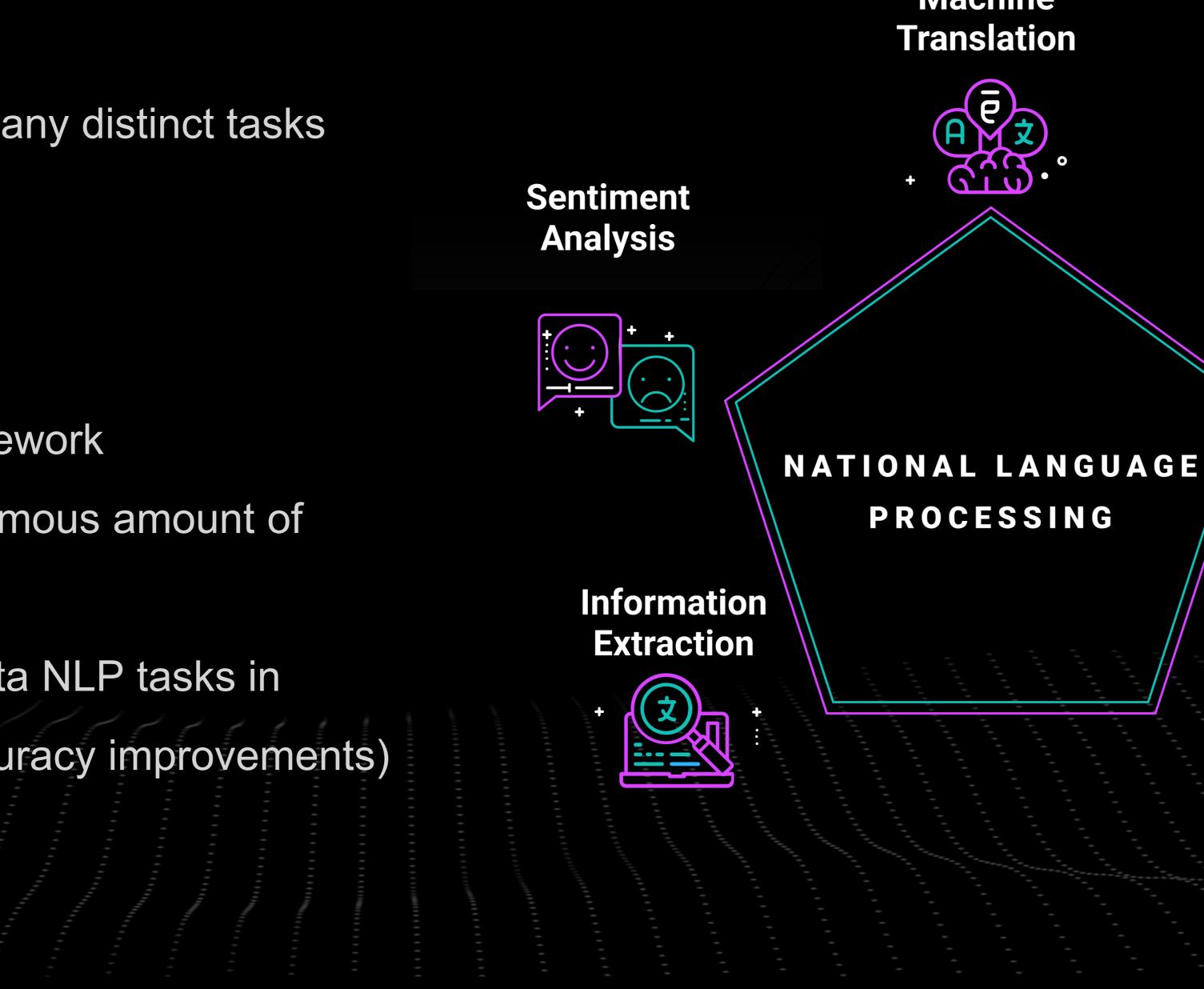
- NLP is a diversified field with many distinct tasks
- Shortage of training data

New Trend

- Pre-training + Fine-tuning framework
 - Pre-training(using the enormous amount of

unannotated text data)

- Fine-tuning(using small-data NLP tasks in
 - resulting in substantial accuracy improvements)



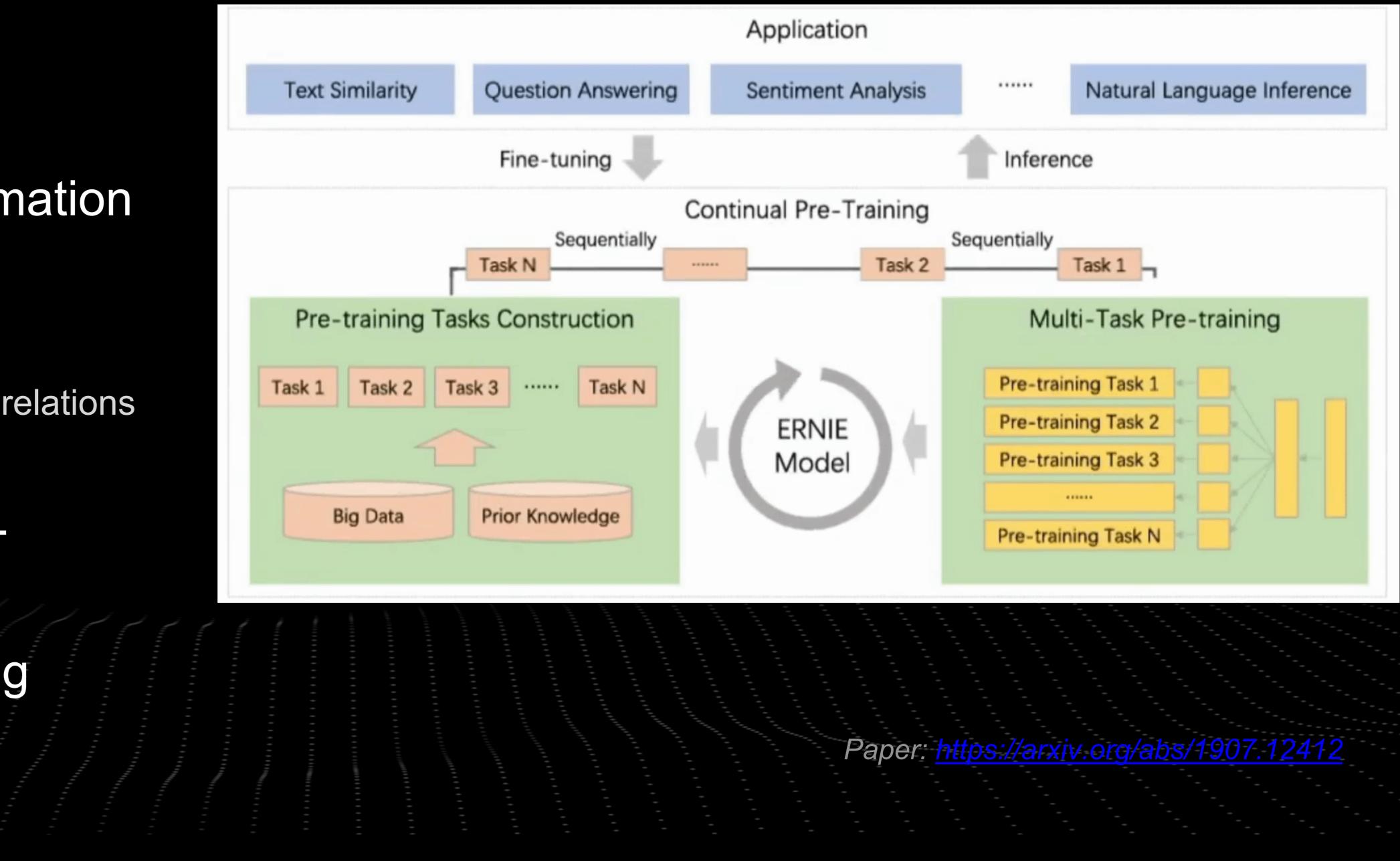
Machine

Question Answering

Information Retrieval

Language Model — ERNIE 2.0

- Inspired by BERT
- Incorporate more information
 - Named entities
 - Semantic closeness
 - Sentence order or discourse relations
- Design a continual pretraining framework for language understanding



Bigger Model is Better?

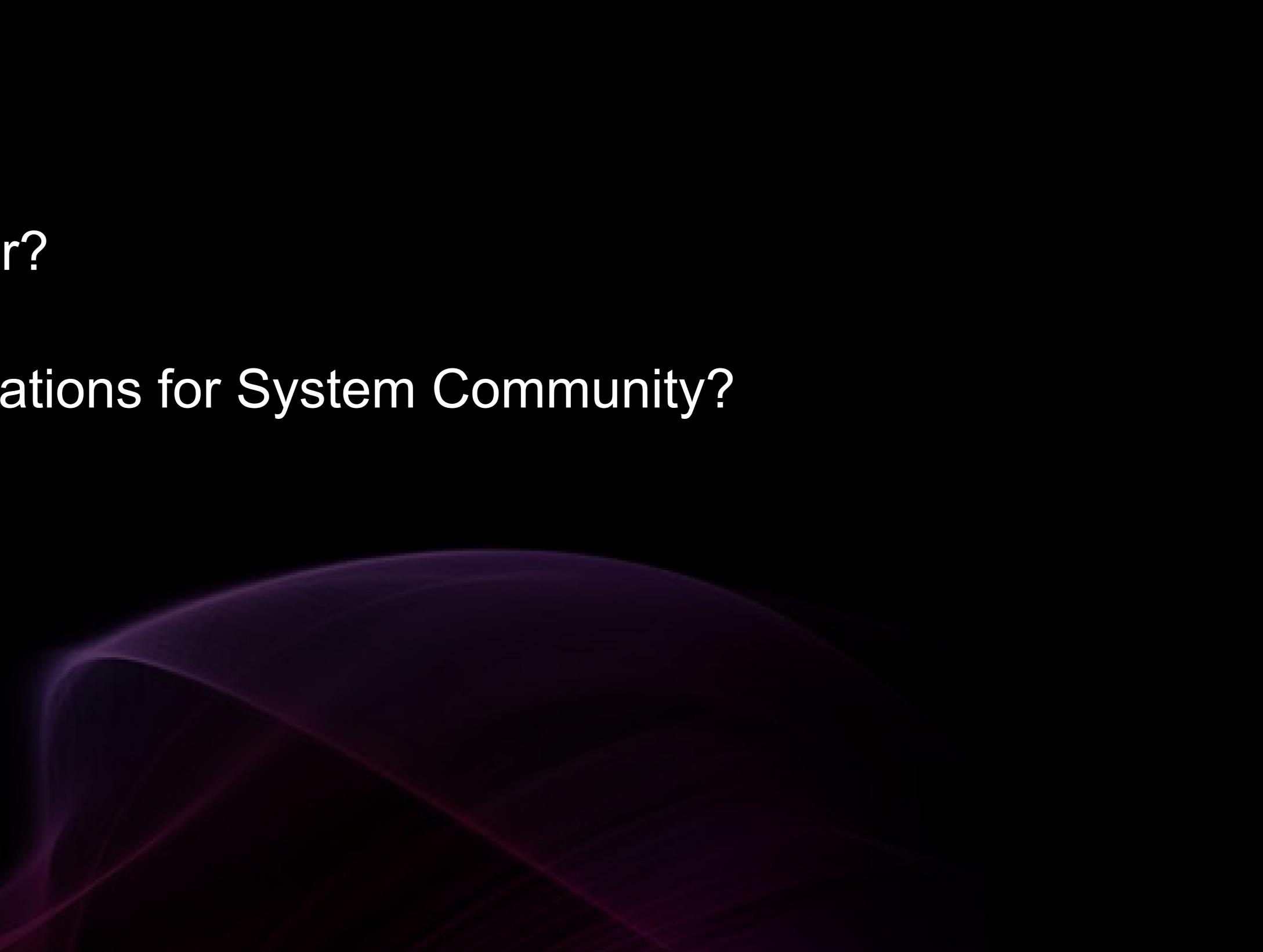
Model	Hidden size	Layer	Parameters
BERT-base	768	12	110M
BERT-large	1024	24	340M
GPT2-large	1024	24	1.5B
Megatron	1024	72	8.3B
T5	E1024 D1024	E24 D24	11B

"BERT was performed on 16 Cloud TPUs (64 TPU chips total). Each pretraining took 4 days to complete". Paper: https://arxiv.org/pdf/1810.04805.pdf

interconnect with supporting CPU host machines." Paper :<u>https://arxiv.org/pdf/1910.10683.pdf</u>.

Why Bigger is Better?

What Are the Implications for System Community?

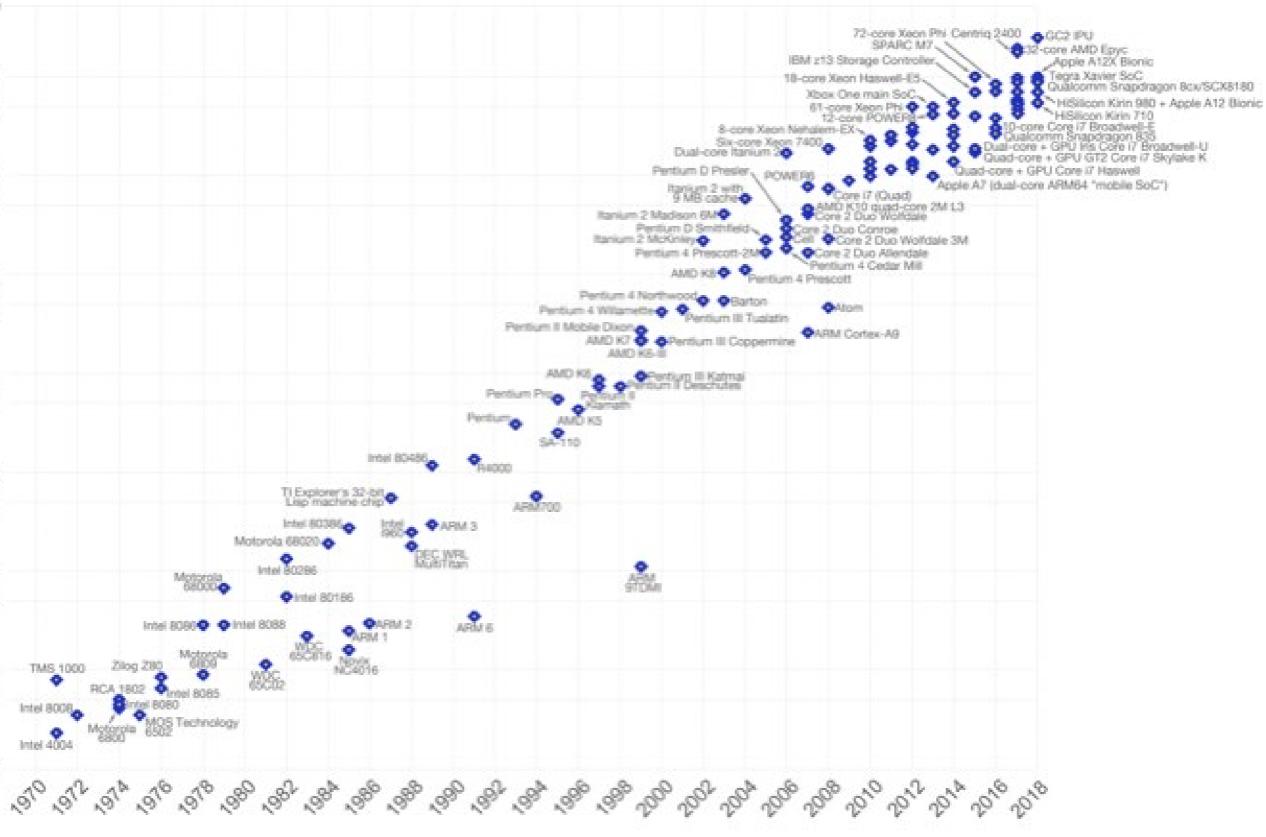


Moore's Law

	advanceme ed to Moore
	0,000,000,00
10	0,000,000,00
5	5,000,000,00
1	,000,000,00
	500,000,00
	100,000,00
count	50,000,00
tor	10,000,00
ransis	5,000,00
-	1,000,00
	500,00
	100,00
	50,00
	10,00
	5,00
	1,00

aw – The number of transistors on integrated circuit chips (1971-2018)

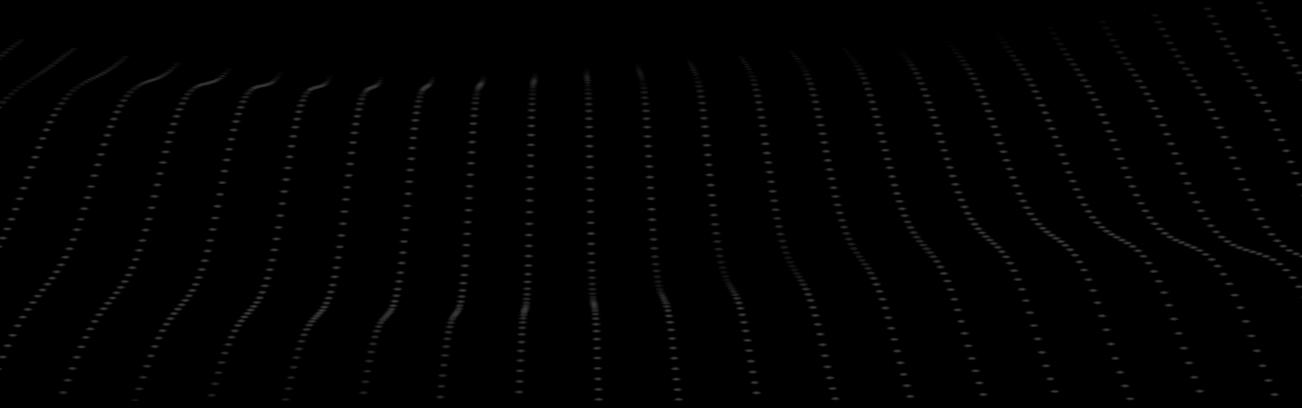
ribes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. It is important as other aspects of technological progress – such as processing speed or the price of electronic products – are law.



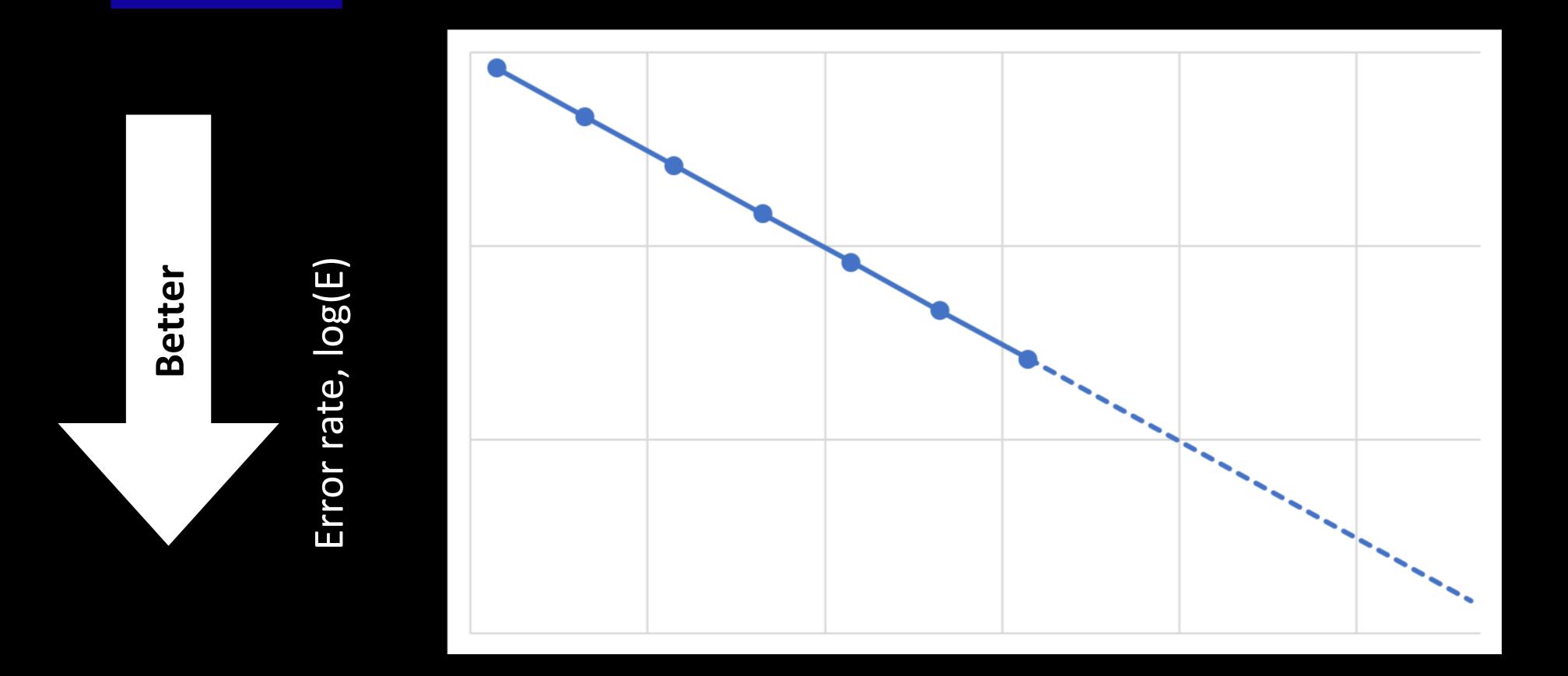
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

What does it mean to be "Better"?

Better Accuracy Faster Training



Better as Better Accuracy

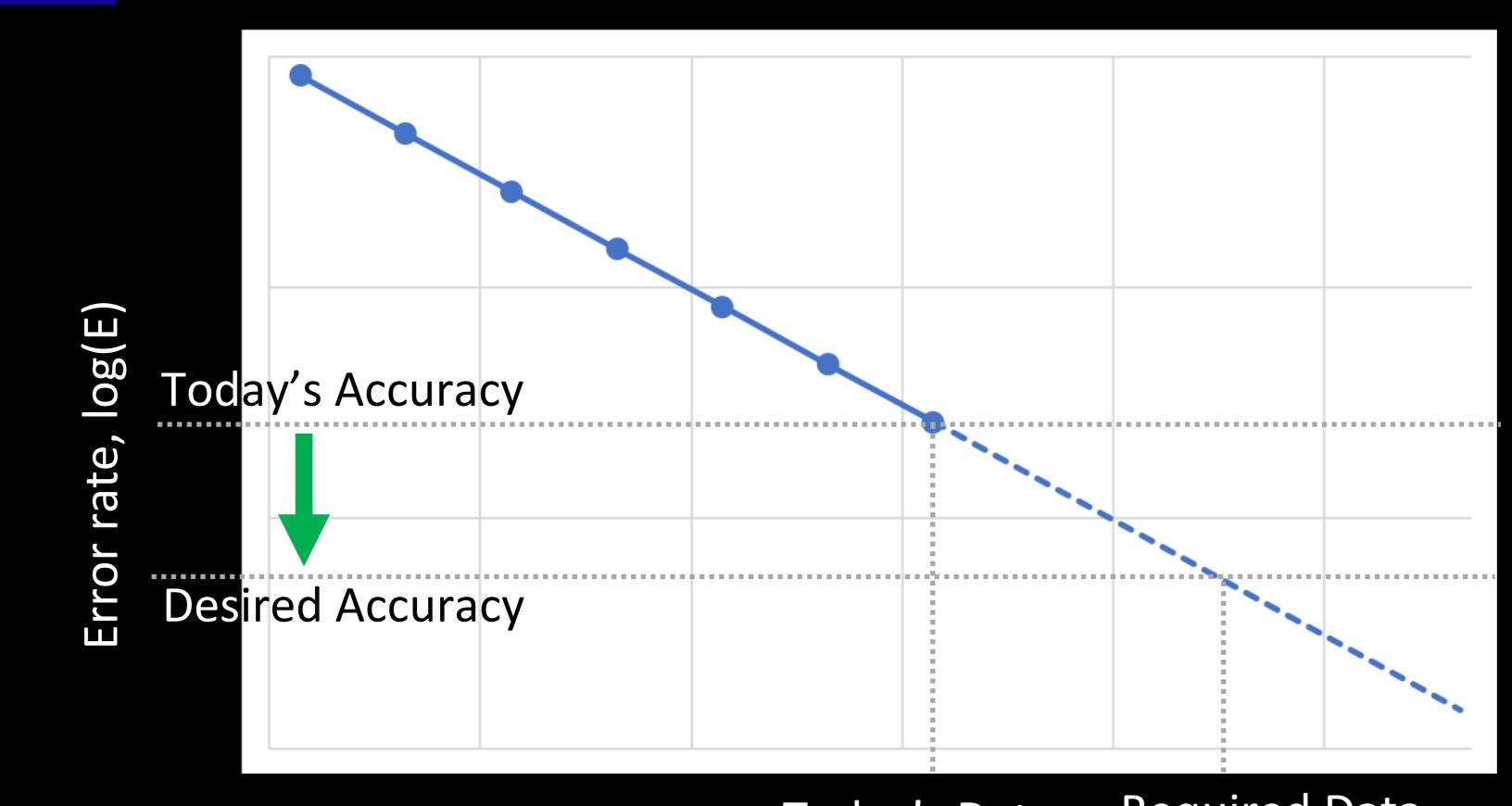


training samples, log(d)

Bigger

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). <u>Deep learning scaling is predictable, empirically.</u> arXiv preprint arXiv:1712.00409.

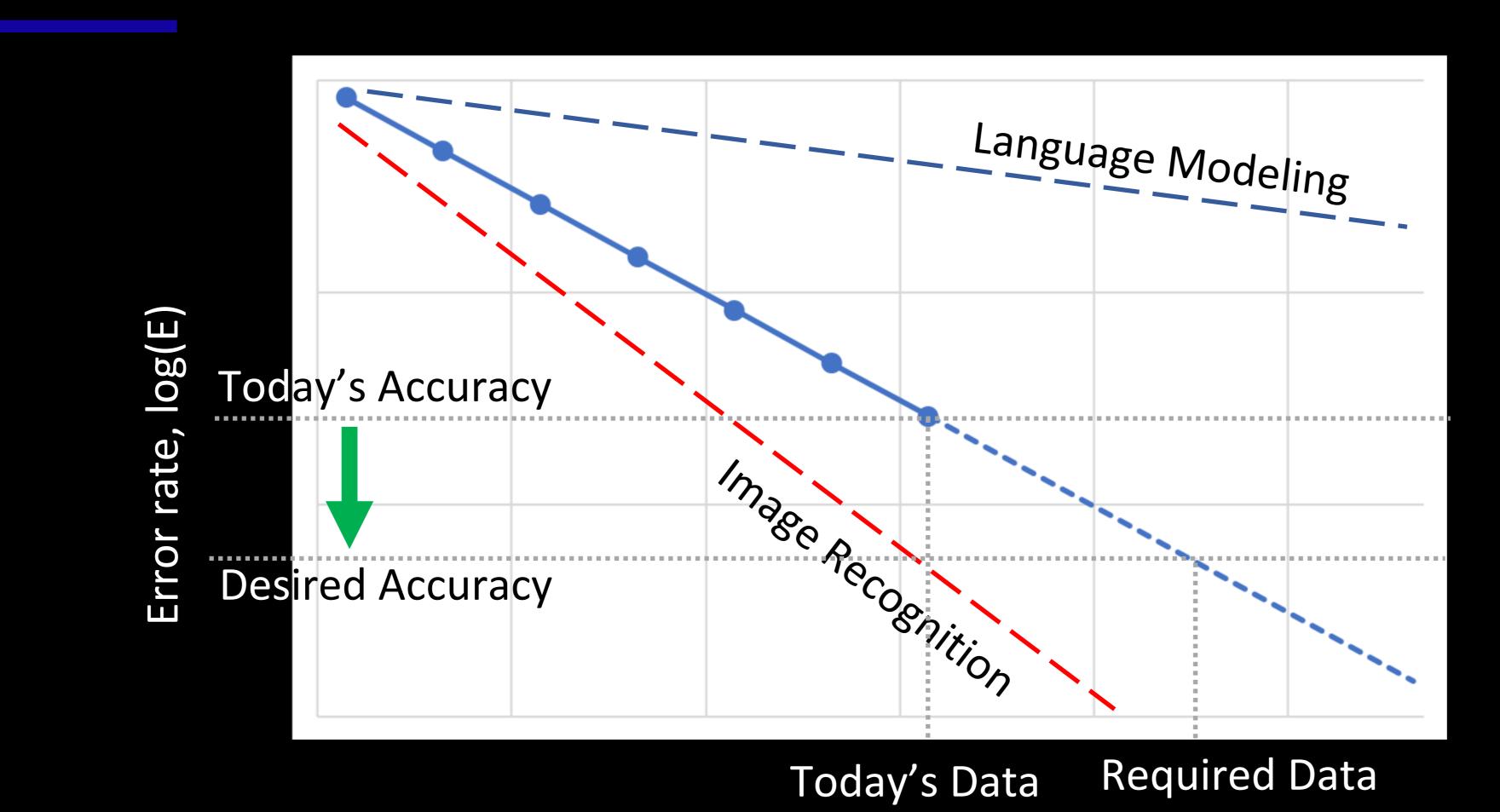
Better as Better Accuracy



Today's Data Required Data # training samples, log(d)

> Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). <u>Deep learning scaling is predictable, empirically.</u> arXiv preprint arXiv:1712.00409.

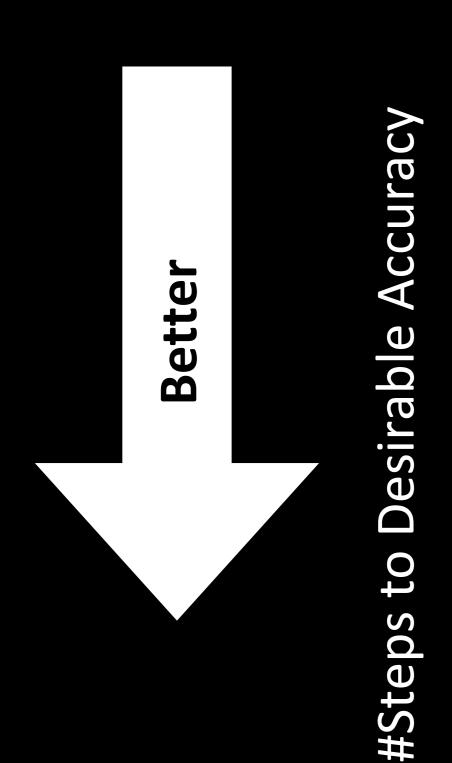
Better as Better Accuracy

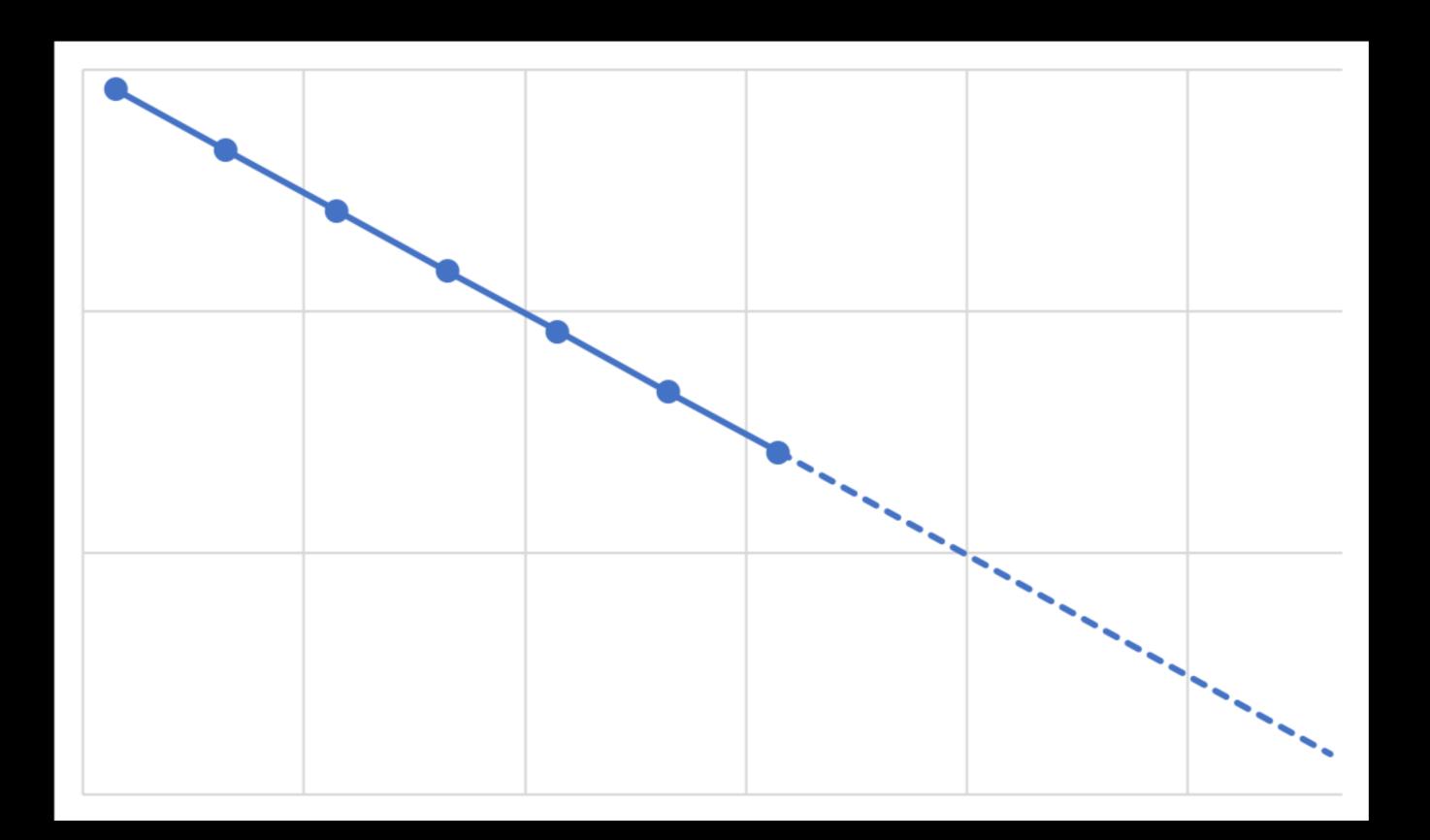


training samples, log(d)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409.

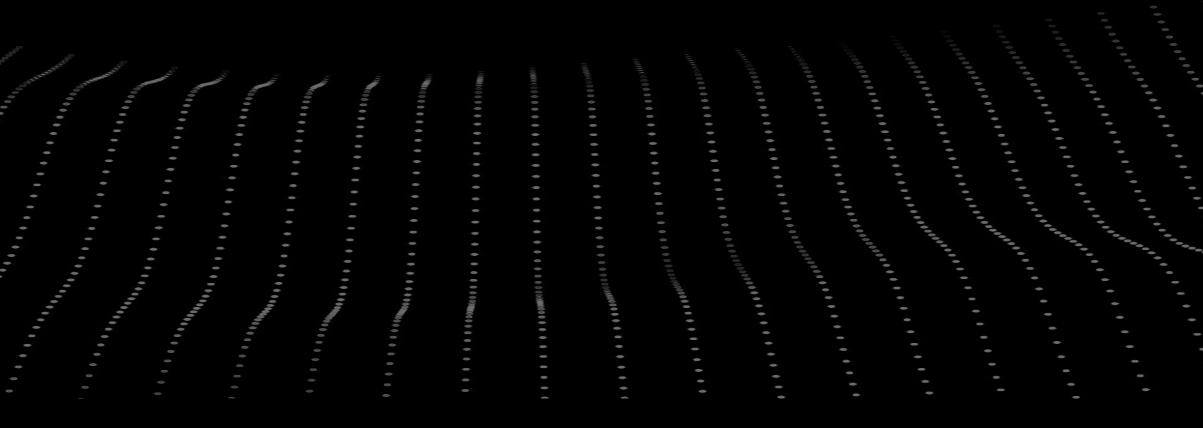
Better as Faster Training



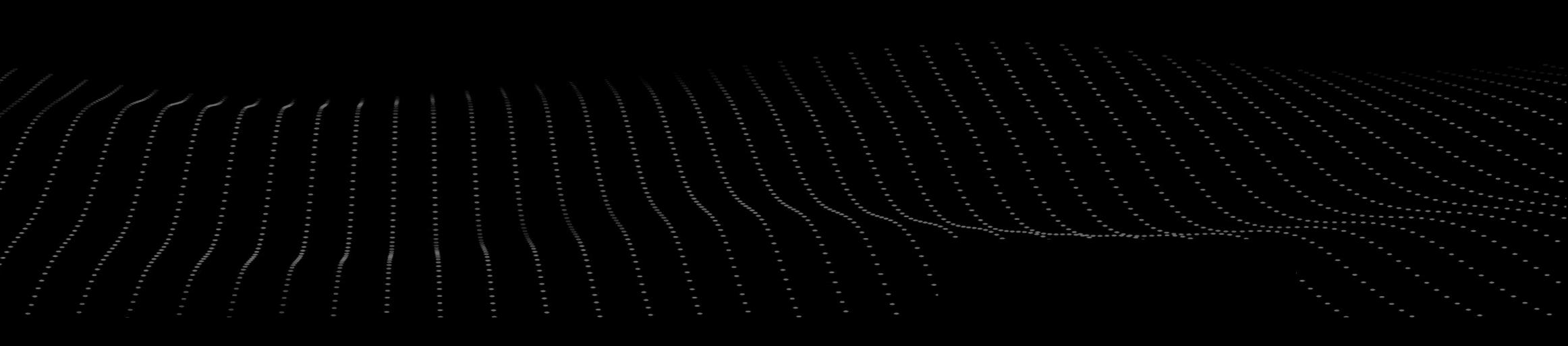


#Parameters, log(m) Bigger

Ardalani, N., Hestness, J., and Gregory Diamos. "Have a larger cake and eat it faster too: A guideline to train larger models faster." (SysML 2018).

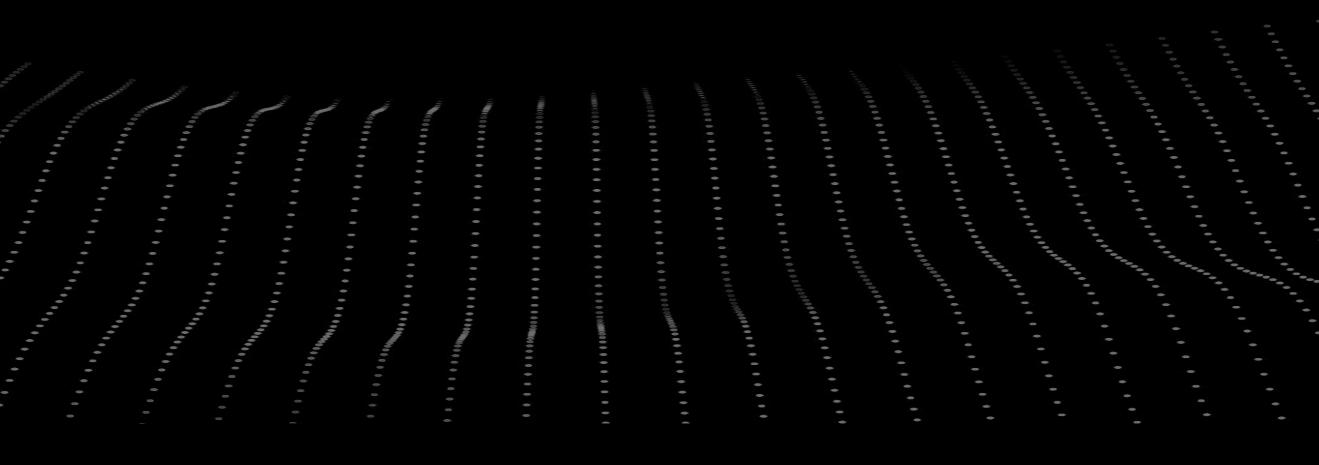


Memory capacity/chip can grow only so much...



Memory capacity/chip can grow only so much...

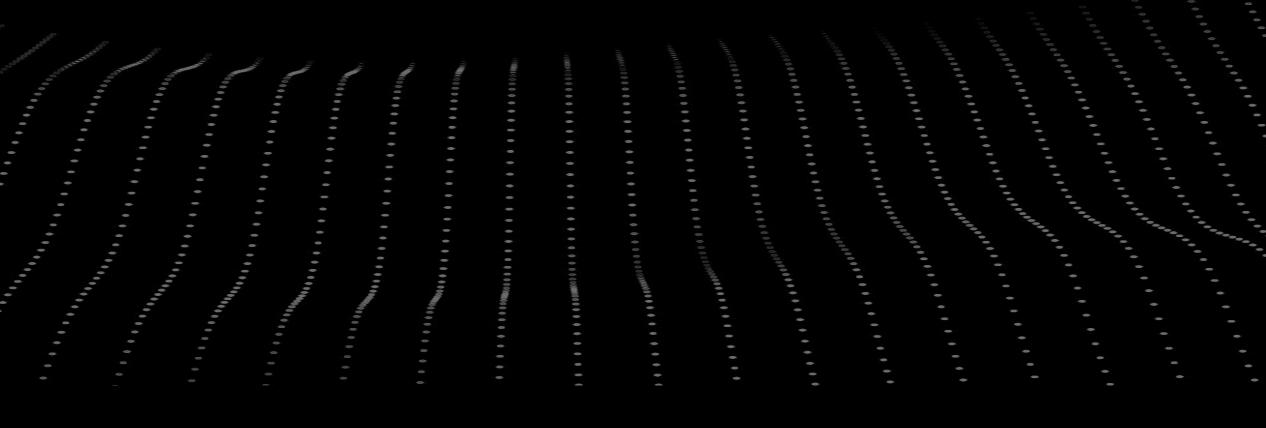
Break the model and data into smaller chunks

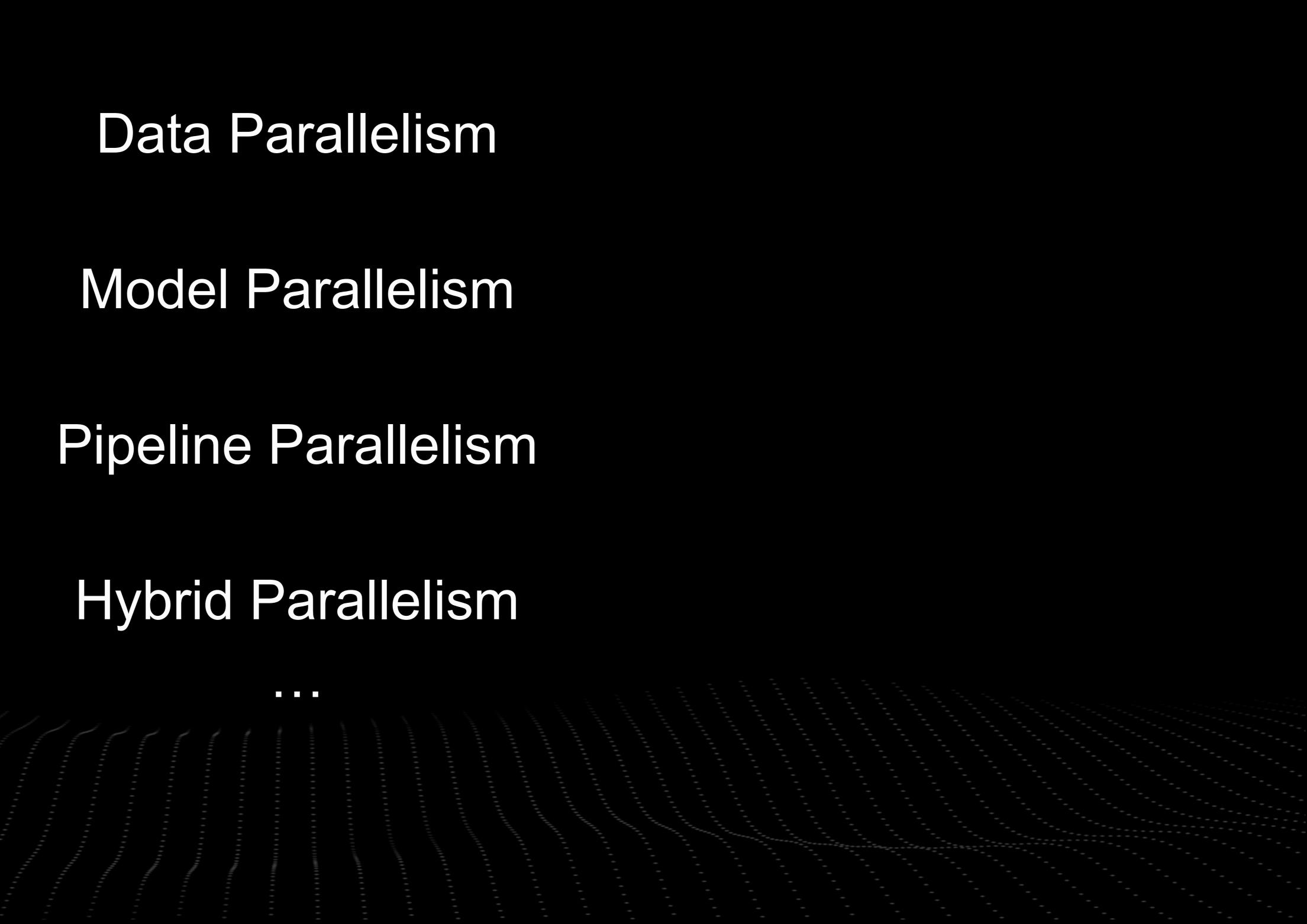


Break the model and data into smaller chunks

We need to exploit all forms of parallelism

Memory capacity/chip can grow only so much...





Current Practice: Hire Expert Programmers

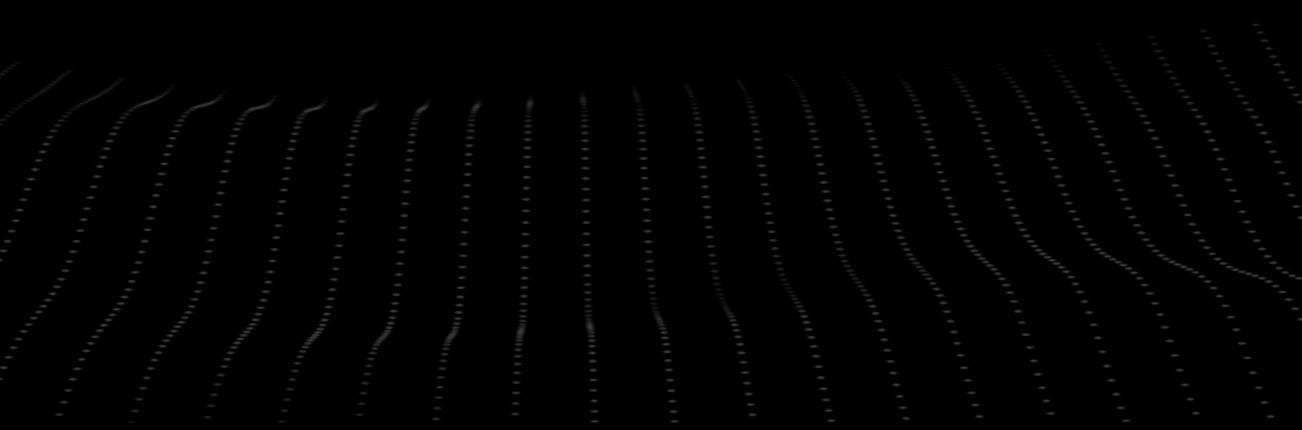
How to find a good parallelism strategy?

 M_0

M_1 M_2 M_3

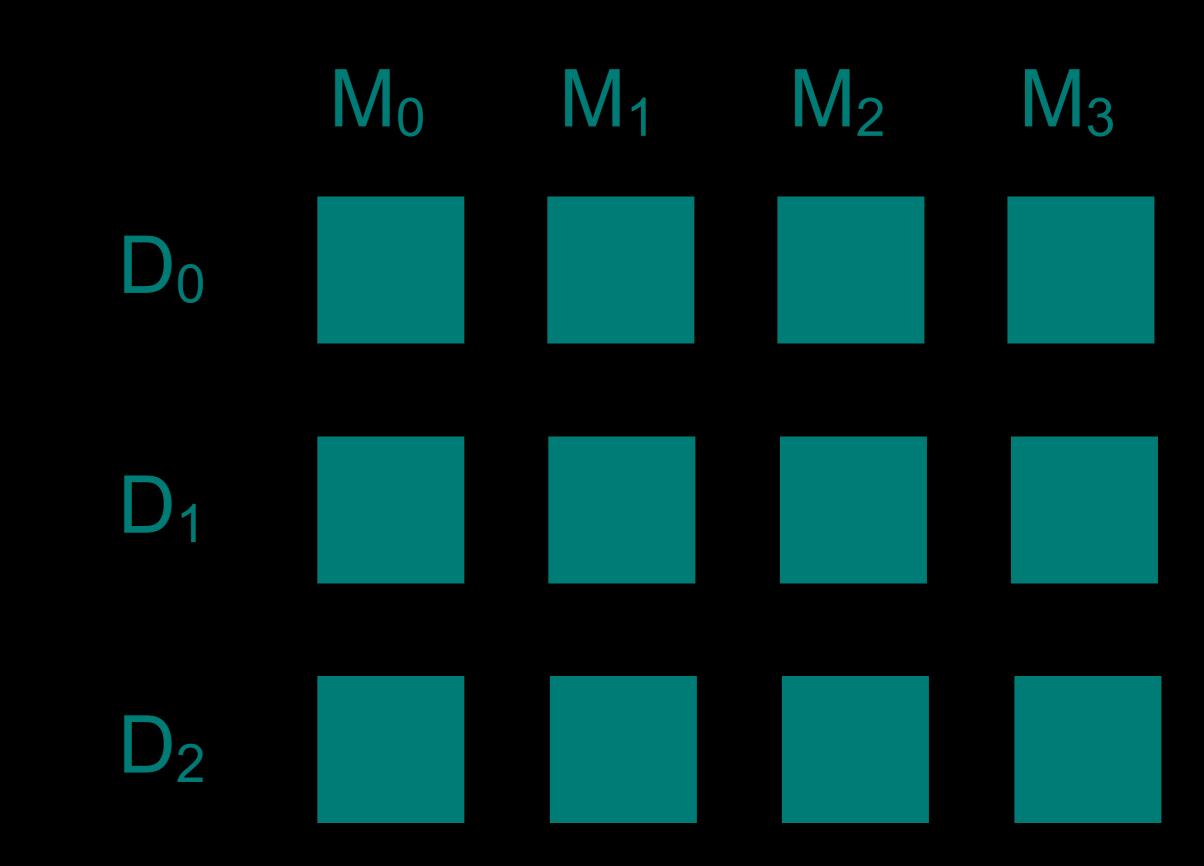
Current Practice: Hire Expert Programmers

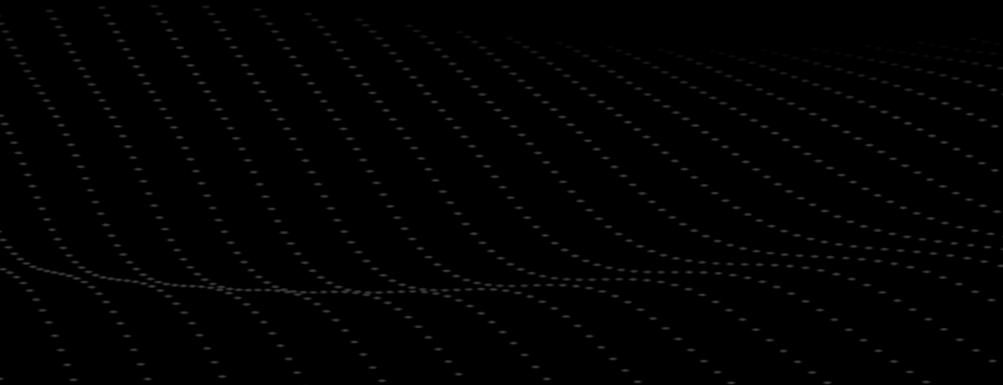
How to find a good parallelism strategy?



Current Practice: Hire Expert Programmers

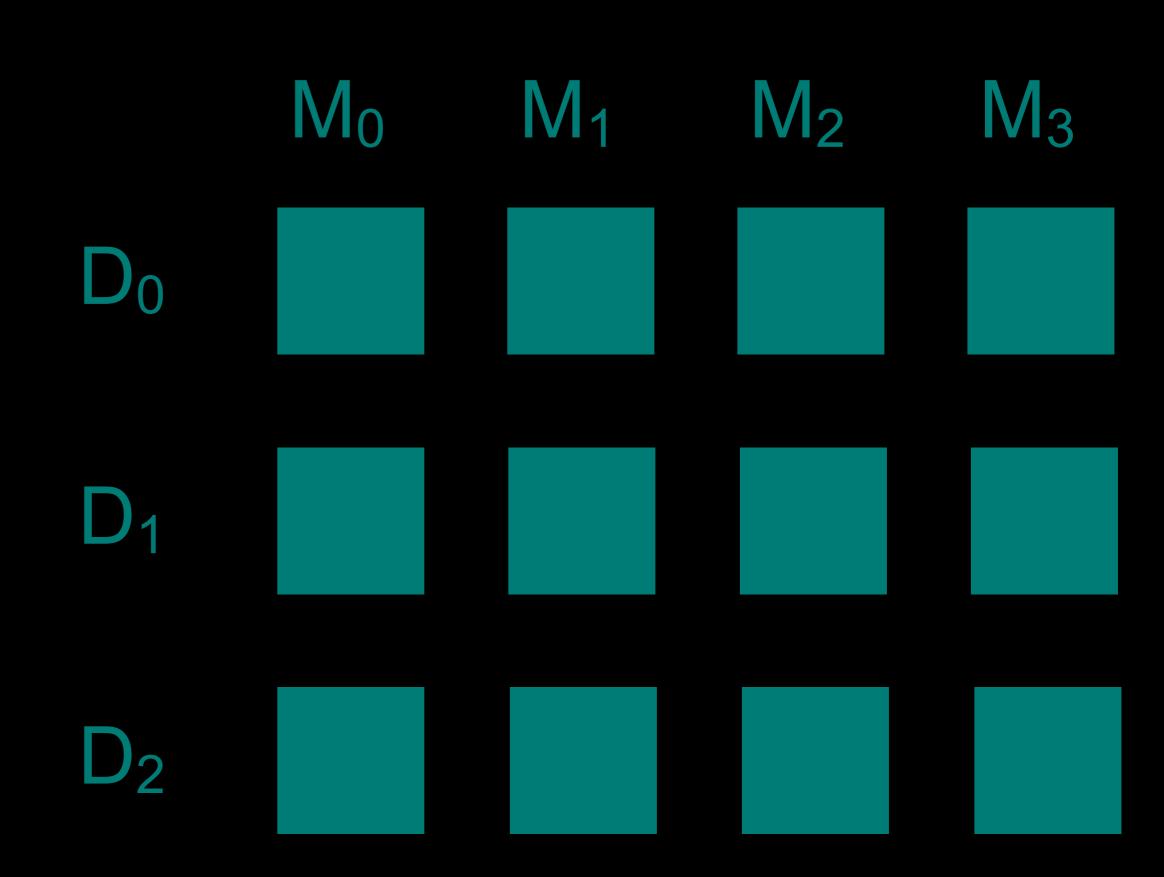
How to find a good parallelism strategy?

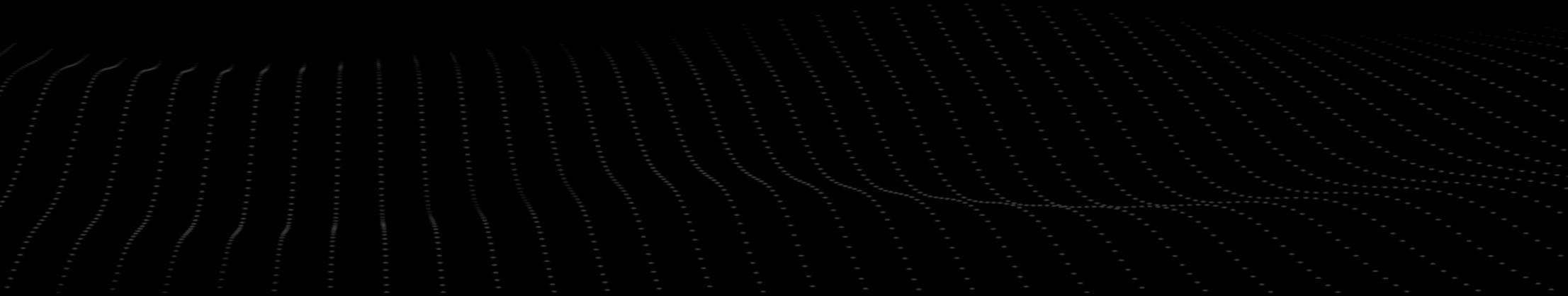




How to find a good parallelism strategy?

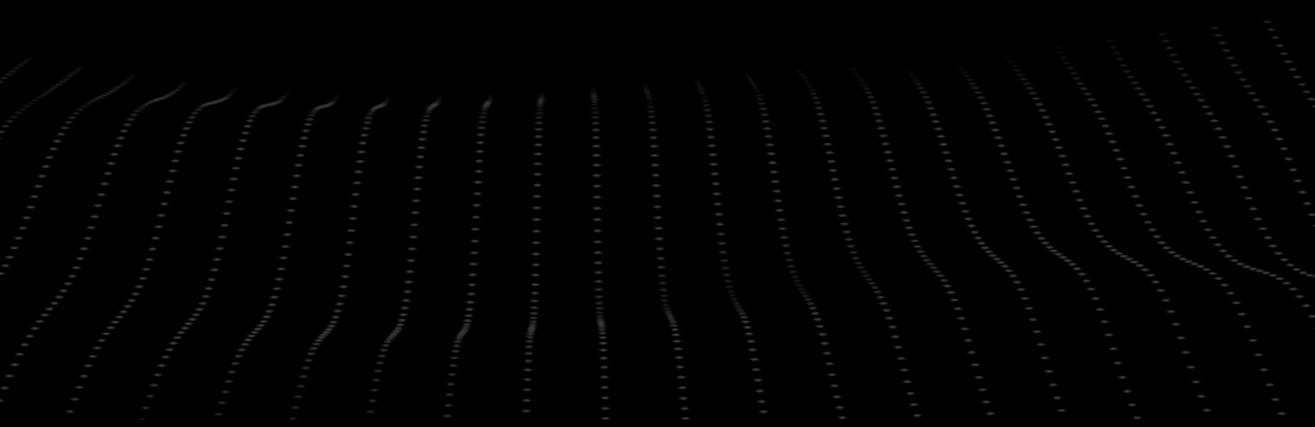
- **Current Practice: Hire Expert** Programmers
- Cutting edge: Reinforcement Learning, Dynamic Programming





GOOD NEWS Best mapping/Best timing

BAD NEWS System Under-utization



Solution?

Co-design Parallelism Strategy & Hardware Accelerator

Conclusion

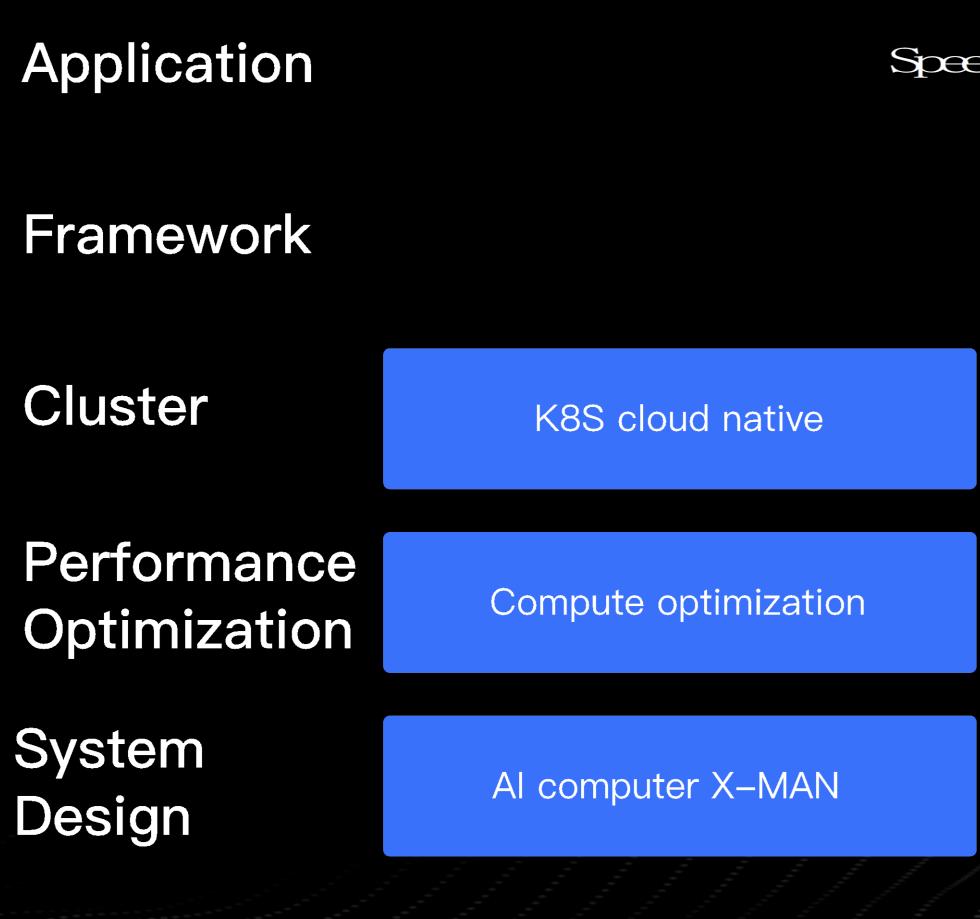
GOOD NEWS Bigger is Better

Memory is Bottleneck Systems Underutilization

WHAT CAN WE DO?

Cloud AI Computing Platform KongMing Architecture

GPU



Chip

CPU

Speech/Inages/NLP/Recommendation

PaddlePaddle

Smart Scheduling

IO optimiaztion

Elastic provision

Communication optimzation

High performance storage pool

High speed interconnect

ASIC

Baidu Kunlun



