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The Future of Computing from a 
Memory/Storage Centric Point-of-view



Emergence of the 
Data Economy

Virtuous Cycle Driven by Increased Data Value
 Creates continuous need to capture, process, move & store data
 Generates ever-increasing demand for memory & fast storage

Demand for Memory Density Growth Insatiable

Internet Era – 250B GB/Year

Mobile Era – 7,000B GB/Year

Mobile Era – 22,000B GB/Year

Mobile Era – 62,000B GB/Year

2000-2007

2008-2016

2017

2021



Can classical computing provide 2x performance gain every two 
years?  
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Legacy Memory Model support impacts the architecture efficiency...

Instead of more transistors for less 
gain in instruction level performance

Add more cores for greater parallel 
performance – Good for AI

More Cores = More Memory IO 



Restoring ‘system’ balance is critical.

Efficiencies fall off for BW intensive workloads.

Rank Site Computer Cores HPL Rmax 
(Pflop/s)

TOP500 
Rank HPCG (Pflop/s)

Fractio
n of 
Peak

1 DOE/SC/ORNL (USA) Summit – AC922, IBM POWER9 22C 3.07GHz, dual-
rail Mellanox EDR Infiniband, NVIDIA Volta V100 (IBM) 2,397,824 143.500 1 2.926 1.5%

2 DOE/NNSA/LLNL (USA) Sierra – S922LC, Power9 22C 3.1GHz, Mellanox EDR, 
NVIDIA Tesla V100 (IBM / NVIDIA / Mellanox) 1,572,480 94.640 2 1.796 1.4%

3 RIKEN Advanced Institute for 
Computational Science (Japan)

K computer – , SPARC64 VIIIfx 2.0GHz, Tofu 
interconnect (Fujitsu) 705,024 10.510 18 0.603 5.3%

4 DOE/NNSA/LANL/SNL (USA) Trinity – Cray XC40, Intel Xeon E5-2698 v3 16C 
2.3GHz, Aries, Intel Xeon Phi 7250 68C 1.4GHz (Cray) 979,072 20.159 6 0.546 1.3%

5
National Institute of Advanced 
Industrial Science and 
Technology (AIST) (Japan)

AI Bridging Cloud Infrastructure (ABCI) – PRIMERGY 
CX2570M4, Intel Xeon Gold 6148 20C 2.4GHz, 
Infiniband EDR, NVIDIA Tesla V100 (Fujitsu)

368,640 16.859 10 0.509 1.7%

6 Swiss National Supercomputing 
Centre (CSCS) (Switzerland)

Piz Daint – Cray XC50, Intel Xeon E5-2690v3 12C 
2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB (Cray) 387,872 21.230 5 0.497 1.8%

7 National Supercomputing 
Center in Wuxi (China)

Sunway TaihuLight – Sunway MPP, SW26010 260C 
1.45GHz, Sunway (NRCPC) 10,649,600 93.015 3 0.481 0.4%



Many Workloads Require higher BW/FLOP, Not lower

Assume a 24-core chip, 512bit-wide vector unit, @ 3GHz.
1.15 Peak TFLOPs
Peak Memory BW needed - ~9TB/s to ~14TB/s
Peak memory power (@ 6 pJ/b) – ~432W to  ~650W

To improve system efficiency, we need to improve the BW to Flops ratio of memory/compute systems
AND…

Reduce Data Movement power



With 100’s of replicated cores on 
die, performance and functionality 
can be maintained.

Dynamic 
Reconfigurability
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Source: Monica Magalhaes Periera and Luigi Carro, “Dynamic Reconfigurable Computing: The Alternative to 
Homogeneous Multicores under Massive Defect Rates”, International Journal of Reconfigurable Computing, Vol. 2011.

 Functional Redundancy…memory has been doing this for a LONG time!

High device defect rate (>15%) may become a fact of life



Memory technologies we have today will still be around for 
some time.
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Comparison of various emerging memory technologies
DRAM STTRAM PCM/ 1T1R Cross Point 

RRAM NAND

Read Latency 20ns ~50ns ~100ns-200ns ~100ns-200ns ~10us

Write Latency 20ns ~50ns ~1us ~1us ~10us

Read Endurance >1e15 >1011 >107 >107 >107

Write Endurance >1e15 >1011 >106 >106 2K-100K

Write/Read
Energy/Bit <10pJ/bit ~25pJ/bit ~100-200 

pJ/bit
~100-200 

pJ/bit >100pJ/bit

Alterability ~2KB <2KB ~10’s B ~10’s B Large Blocks

Retention@RT ~milli 
seconds Months ~Years ~Years Years

Areal Density 1X ~30x



Intrinsic, on die, Memory BW is high, 
but is constrained by the off die 
system bus.

If we stay with today’s paradigm, 
the memory bottleneck continues.
 Memory energy is interconnect 

dominated

A challenge is not the memory device, 
but the way it’s used.

Low off Memory BW     High on Memory BW

2048B32B Bank 1
ReadShip

2048B32B Bank 2
ReadShip

2048B32B Bank 3
ReadShip

2B

DRAM

25 Gb/s 4,000 Gb/s

BUS to CPU

2048B32B Bank n
ReadShip



Higher memory BW = higher power.  
Reduce the interconnect distance. 

J. Hasler, B. Marr; “ Finding a Roadmap to achieve large neuromorphic hardware systems”; Frontiers in Neuroscience, Sept 10, 2013 
http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full

http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full


To improve system performance and power efficiency – MOVE compute to where the data is stored. 

Bytes/FLOP could improve by over 10x
The opportunity is deciding the type of computation to put near/in memory
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Leverage Memory BW to > Bytes/Flop

Improved System Performance and Power Efficiency



Likely the best ‘product’ advice I’ve ever received…

“The architecture that wins is the 
one that’s EASIEST to program”

So the architecture should have:
High Performance efficiency for memory intensive workloads.  

.Bring the ‘Compute to the Memory”.

Scalable to handle today’s and future algorithms.

Robust operation even with high device failure rates

Forward compatibility… ‘preserve’ 40+ years of SW investment.

… Scrutinize measures of goodness carefully.

When 
considering 
an 
‘architectural’ 
change… 



Artificial Neural Networks
Supporting the Basic Functionality is One 
Key to HW Scalability 

http:www.asimovinstitute.org/neural-network-zoo
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Kunle Olukotun ISCA’18 Keynote, June 15, 2018

AI/Machine Learning provides the capability to get more insight
With the larger volumes of data.



The ratio of compute to memory BW is different for 
different networks.  
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Example: BW demands for a ResNet-50 Network vary 
significantly depending on image resolution.
Flexibility of the architecture to ‘tune’ a network is a must for an optimal solution.

resnet50 input image 
sizes w/Optimization Gops BW/Image 

(GB/s)
BW (30 

Images/s)

224x224x3 7.4 0.17 5.1

640x480x3 45.9 1.03 30.9

1920x1080x3 314.0 7.07 212.1

3840x2160x3 1256.3 28.3 849

resnet50 input image 
sizes w/o optimization Gops BW/Image 

(GB/s)
BW (30 

Images/s)

224x224x3 7.4 0.37 11.1

640x480x3 45.9 2.3 69

1920x1080x3 314.0 15.7 471

3840x2160x3 1256.3 62.82 1884.6



“

“Combining memory and processing 
resources in a single device has 
huge potential to increase the 
performance and efficiency of 
DNNs… (to) achieve… performance 
in a system that can be generally 
useful across all problem sets.

Looking Forward –stacking memory on top of 
the Compute fabric,  we can get high bandwidth, 
low energy and…yes…modest capacity.

https://www.graphcore.ai/blog/why-is-so-much-memory-needed-for-deep-neural-networks 



Exploit the unique physics of “emerging 
memory” technologies for in memory 
neural fabrics.
 Summing (threshold) and sigmoid 

(triggering) behavior
 Analog “weight” storage
 Many recent papers based on resistive, 

magnetic, and floating gate technologies 

Memory architecture provides insight into the  
next generation of AI Accelerators
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