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Virtuous Cycle Driven by Increased Data Value

Emergence Of the = Creates continuous need to capture, process, move & store data
Data Economy = Generates ever-increasing demand for memory & fast storage

Demand for Memory Density Growth Insatiable

2000-2007 Internet Era — 250B GB/Year

2008-2016 Mobile Era — 7,000B GB/Year
2017 Mobile Era — 22,000B GB/Year

2021 Mobile Era — 62,000B GB/Year
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Can classical computing provide 2x performance gain every two
years?

Legacy Memory Model support impacts the architecture efficiency...

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Instead of more transistors for less
gain in instruction level performance

Add more cores for greater parallel
performance — Good for Al

More Cores = More Memory IO



Efficiencies fall off for BW intensive workloads.

Restoring ‘system’ balance is critical.

1 DOE/SC/ORNL (USA)

2 DOE/NNSA/LLNL (USA)

RIKEN Advanced Institute for
Computational Science (Japan)

4 DOE/NNSA/LANL/SNL (USA)

National Institute of Advanced
5 Industrial Science and
Technology (AIST) (Japan)

Swiss National Supercomputing
Centre (CSCS) (Switzerland)

National Supercomputing
Center in Wuxi (China)

Computer

Summit — AC922, IBM POWERS9 22C 3.07GHz, dual-
rail Mellanox EDR Infiniband, NVIDIA Volta V100 (IBM)

Sierra — S922LC, Power9 22C 3.1GHz, Mellanox EDR,
NVIDIA Tesla V100 (IBM / NVIDIA / Mellanox)

K computer — , SPARC64 VIllIfx 2.0GHz, Tofu
interconnect (Fujitsu)

Trinity — Cray XC40, Intel Xeon E5-2698 v3 16C
2.3GHz, Aries, Intel Xeon Phi 7250 68C 1.4GHz (Cray)

Al Bridging Cloud Infrastructure (ABCIl) - PRIMERGY
CX2570M4, Intel Xeon Gold 6148 20C 2.4GHz,
Infiniband EDR, NVIDIA Tesla V100 (Fujitsu)

Piz Daint — Cray XC50, Intel Xeon E5-2690v3 12C
2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB (Cray)

Sunway TaihuLight — Sunway MPP, SW26010 260C
1.45GHz, Sunway (NRCPC)
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Many Workloads Require higher BW/FLOP, Not lower
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To improve system efficiency, we need to impro'x\lcil g1e BW to Flops ratio of memory/compute systems

Reduce Data Movement power
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High device defect rate (>15%) may become a fact of life

» Functional Redundancy...memory has been doing this for a LONG time!

Dynamic
Reconfigurability

With 100’s of replicated cores on
die, performance and functionality
can be maintained.

Source: Monica Magalhaes Periera and Luigi Carro, “Dynamic Reconfigurable Computing: The Alternative to

Homogeneous Multicores under Massive Defect Rates”, International Journal of Reconfigurable Computing, Vol. 2011.
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Memory technologies we have today will still be around for
some time.

Cross Point

Read Latency
Write Latency
Read Endurance
Write Endurance

Write/Read
Energy/Bit

Alterability

Retention@RT

Areal Density

~50ns

~50ns

>1011




A challenge is not the memory device,
but the way it’s used.

Low off Memory BW€ High on Memory BW

DRAM Ship Read Intrinsic, on die, Memory BW is high,
— <[E3 « Bank 1 but is constrained by the off die
Ship Read system bus.

< <« N Bank 2 ] .
If we stay with today’s paradigm,

Sl Read the memory bottleneck continues.
BUS to CPU &-—m € 325 < 2048B Bank 3 o
° = Memory energy is interconnect
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25 Gb/s 4,000 Gb/s
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Higher memory BW = higher power.
Reduce the interconnect distance.
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J. Hasler, B. Marr; “ Finding a Roadmap to achieve large neuromorphic hardware systems”; Frontiers in Neuroscience, Sept 10, 2013
http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full
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http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full

Improved System Performance and Power Efficiency

To improve system performance and power efficiency — MOVE compute to where the data is stored.

Low Off Memory BW € High On Memory BW
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Likely the best ‘product’ advice I've ever received...

“The architecture that wins is the
When one that’s EASIEST to program”

conSideri ng So the architecture should have:

High Performance efficiency for memory intensive workloads.
an .Bring the ‘Compute to the Memory”.

‘arch iteCtu ral J Scalable to handle today’s and future algorithms.

Robust operation even with high device failure rates

Change Forward compatibility... ‘preserve’ 40+ years of SW investment.
L) [ A

... Scrutinize measures of goodness carefully.
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Artificial Neural Networks

Supporting the Basic Functionality is One
Key to HW Scalability

only matrix multiplication, no feedback loop, low-latency,
scalable, easily programmable, low-power consumption

APPLIED NEURAL NETWORKS
FOR SIGNAL PROCESSING

FA-LONG LUO AND ROLF UNBEHAUEN

o'l

P
CAMBRIDGE
UNIVERSITY PRESS
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13

Al/Machine Learning provides the capability to get more insight
With the larger volumes of data.

1 Machine Learning

Conventional algorithms

Accuracy

Data size, model complexity Adanted from Jeff b
apte rom Je ean

HotChips 2017
Kunle Olukotun ISCA’18 Keynote, June 15, 2018



Tera Ops / Sec

The ratio of compute to memory BW is different for
different networks.
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Example: BW demands for a ResNet-50 Network vary
significantly depending on image resolution.

Flexibility of the architecture to ‘tune’ a network is a must for an optimal solution.

1400 resnet50 input image G BW/Image BW (30
1256 GOPs/image sizes w/Optimization ops (GB/s) Imagesl/s)
1200 \ 224x224x3 7.4 0.17 5.1
640x480x3 459 1.03 30.9
1000
1920x1080x3 314.0 7.07 212.1
@ 800 3840x2160x3 1256.3 28.3 849
38
600 resnet50 input image G BW/Image BW (30
sizes w/o optimization ops (GB/s) Images/s)
400 224x224x3 7.4 0.37 11.1
200 7.4 GOPs/image 640x480x3 459 2.3 69
\Z 1920x1080x3 314.0 15.7 471
0 3840x2160x3 1256.3 62.82 1884.6

224x224x3 640x480x3 1920x1080x33840x2160x3
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Looking Forward — stacking memory on top of
the Compute fabric, we can get high bandwidth,
low energy and...yes...modest capacity.

Programmable, scalable platform as processor in memory

Combining memory and processing
resources in a single device has
huge potential to increase the
performance and efficiency of
DNNSs... (to) achieve... performance
in a system that can be generally
useful across all problem sets.

________

/ A .
PIM based accelerator Logic die

for neural computing [N

Hybrid Memory Cube (HMC)
» Heterogeneous integration
« Flexible logic die design

Y
[J. Jeddeloh "12 TVLSI]

NoC Parallel cores
| L architecture

‘ uffer ‘ ‘ Buffer ‘
MAC|[MAC]

Processing Engine

w

Q1. Neural computing layer should meet
thermal and area constraint in 3D stacked
DRAM

Q2. NeuroCube should be programmable
to cover different types of neural network

https://www.graphcore.ai/blog/why-is-so-much-memory-needed-for-deep-neural-networks
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Memory architecture provides insight into the
next generation of Al Accelerators
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Exploit the unique physics of “emerging
memory” technologies for in memory
neural fabrics.

= Summing (threshold) and sigmoid
(triggering) behavior

= Analog “weight” storage

= Many recent papers based on resistive,
magnetic, and floating gate technologies
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