The Future of Computing from a Memory/Storage Centric Point-of-view

Steve Pawlowski, Vice President, Advanced Computing Solutions November 4th, 2019

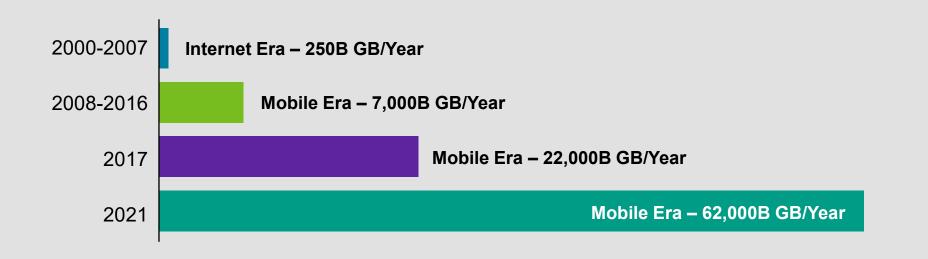
©2019 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including regarding their features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Emergence of the Data Economy

Virtuous Cycle Driven by Increased Data Value

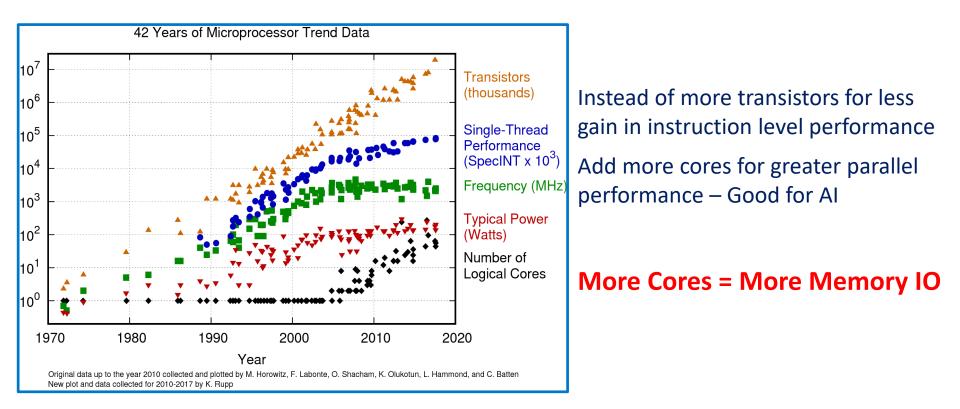
- Creates continuous need to capture, process, move & store data
- Generates ever-increasing demand for memory & fast storage

Demand for Memory Density Growth Insatiable



Can classical computing provide 2x performance gain every two years?

Legacy Memory Model support impacts the architecture efficiency...

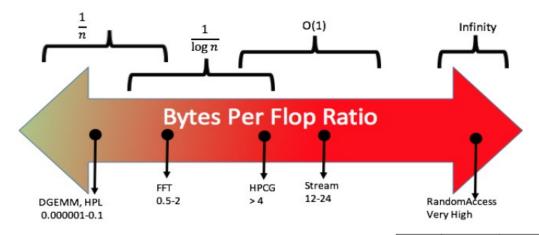


Efficiencies fall off for BW intensive workloads.

Restoring 'system' balance is critical.

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fractio n of Peak
1	DOE/SC/ORNL (USA)	Summit – AC922, IBM POWER9 22C 3.07GHz, dual- rail Mellanox EDR Infiniband, NVIDIA Volta V100 (IBM)	2,397,824	143.500	1	2.926	1.5%
2	DOE/NNSA/LLNL (USA)	Sierra – S922LC, Power9 22C 3.1GHz, Mellanox EDR, NVIDIA Tesla V100 (IBM / NVIDIA / Mellanox)	1,572,480	94.640	2	1.796	1.4%
3	RIKEN Advanced Institute for Computational Science (Japan)	K computer – , SPARC64 VIIIfx 2.0GHz, Tofu interconnect (Fujitsu)	705,024	10.510	18	0.603	5.3%
4	DOE/NNSA/LANL/SNL (USA)	Trinity – Cray XC40, Intel Xeon E5-2698 v3 16C 2.3GHz, Aries, Intel Xeon Phi 7250 68C 1.4GHz (Cray)	979,072	20.159	6	0.546	1.3%
5	National Institute of Advanced Industrial Science and Technology (AIST) (Japan)	Al Bridging Cloud Infrastructure (ABCI) – PRIMERGY CX2570M4, Intel Xeon Gold 6148 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 (Fujitsu)	368,640	16.859	10	0.509	1.7%
6	Swiss National Supercomputing Centre (CSCS) (Switzerland)	Piz Daint – Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB (Cray)	387,872	21.230	5	0.497	1.8%
7	National Supercomputing Center in Wuxi (China)	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway (NRCPC)	10,649,600	93.015	3	0.481	0.4%

Many Workloads Require higher BW/FLOP, Not lower



Assume a 24-core chip, 512bit-wide vector unit, @ 3GHz.

1.15 Peak TFLOPs

Peak Memory BW needed - ~9TB/s to ~14TB/s

Peak memory power (@ 6 pJ/b) – \sim 432W to \sim 650W

Kernel Name	Computation Complexity	Number of computation	Number of Bytes	Bytes / Flop Ratio
SYMGS	O(nrows * nnz/row)	2 *(2*nnz/row +3)* nrows	2 * (nnz/row * (2*8+4) + 5*8+2*4) *nrows	10.32
SPMV	O(nrows * nnz/row)	2 * nnz/row * nrows	(nnz/row * (2*8+4)+2*8+2*4) * nrows	10.44
WAXPBY	O(nrows)	2 * nrows	nrows * 3 * 8	12
DDOT	O(nrows)	2 " nrows	nrows * 2 * 8	8

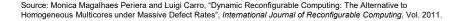
To improve system efficiency, we need to improve the BW to Flops ratio of memory/compute systems AND... **Reduce Data Movement power**

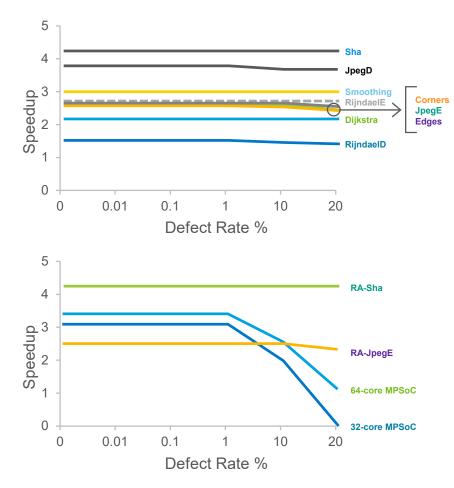
High device defect rate (>15%) may become a fact of life

Functional Redundancy...memory has been doing this for a LONG time!

Dynamic Reconfigurability

With 100's of replicated cores on die, performance and functionality can be maintained.



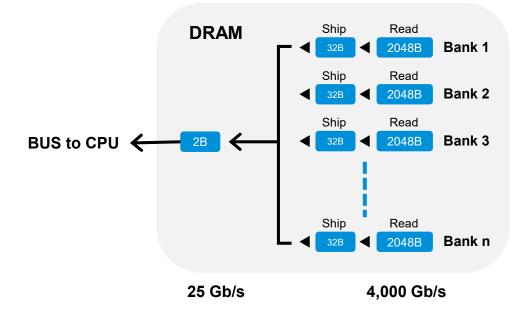


Memory technologies we have today will still be around for some time.

	DRAM	STTRAM	PCM/ 1T1R	Cross Point RRAM	NAND
Read Latency	20ns	~50ns	~100ns-200ns	~100ns-200ns	~10us
Write Latency	20ns	~50ns	~1us	~1us	~10us
Read Endurance	>1e15	> 10 ¹¹	>10 ⁷	>10 ⁷	>10 ⁷
Write Endurance	>1e15	> 10 ¹¹	>10 ⁶	>10 ⁶	2K-100K
Write/Read Energy/Bit	<10pJ/bit	~25pJ/bit	~100-200 pJ/bit	~100-200 pJ/bit	>100pJ/bit
Alterability	~2KB	<2KB	~10's B	~10's B	Large Blocks
Retention@RT	~milli seconds	Months	~Years	~Years	Years
Areal Density	1X				~30x

A challenge is not the memory device, but the way it's used.

Low off Memory BW ← High on Memory BW

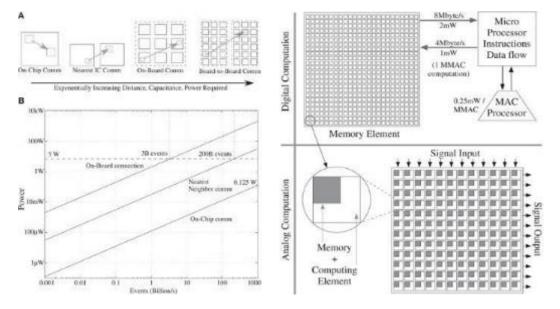


Intrinsic, on die, Memory BW is high, but is constrained by the off die system bus.

If we stay with today's paradigm, the memory bottleneck continues.

 Memory energy is interconnect dominated

Higher memory BW = higher power. Reduce the interconnect distance.



J. Hasler, B. Marr; "Finding a Roadmap to achieve large neuromorphic hardware systems"; Frontiers in Neuroscience, Sept 10, 2013 http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full

Improved System Performance and Power Efficiency

Leverage Memory BW to > Bytes/Flop Low Off Memory BW ← High On Memory BW Bank 1 Bank 1 DRAM Ship Read 2048B 32B 2048B Bank 2 Bank 2 2048B Read Ship Bus Mem In/Near Side Output 2B-Memory To CPU/ BUS 32B 2048B 1024B Cach Processin 2B To CPU System е g Bank n 2048B Bank 8 Read Ship 32B 2048B ~25-100Gb/s ~25 Gb/s ~1,000-4,000Gb/s ~4,000 - 8,000Gb/s ~4,000 Gb/s

To improve system performance and power efficiency – MOVE compute to where the data is stored.

Bytes/FLOP could improve by over 10x

The opportunity is deciding the type of computation to put near/in memory

When considering an 'architectural' change...

Likely the best 'product' advice I've ever received...

"The architecture that wins is the one that's EASIEST to program"

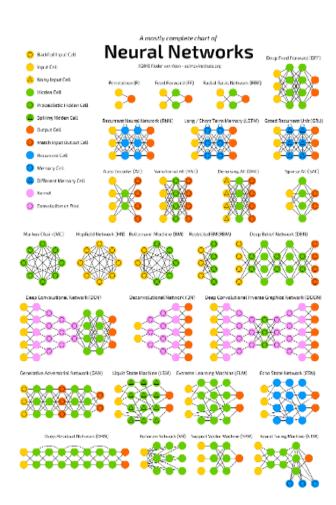
So the architecture should have:

High Performance efficiency for memory intensive workloads..Bring the 'Compute to the Memory'.Scalable to handle today's and future algorithms.

Robust operation even with high device failure rates

Forward compatibility... 'preserve' 40+ years of SW investment.

... Scrutinize measures of goodness carefully.



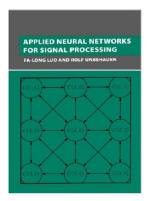
http://www.asimovinstitute.org/neural-network-zoo

Artificial Neural Networks

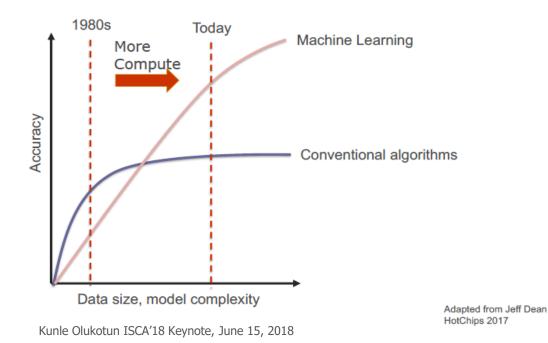
Supporting the Basic Functionality is One Key to HW Scalability

only matrix multiplication, no feedback loop, low-latency, scalable, easily programmable, low-power consumption

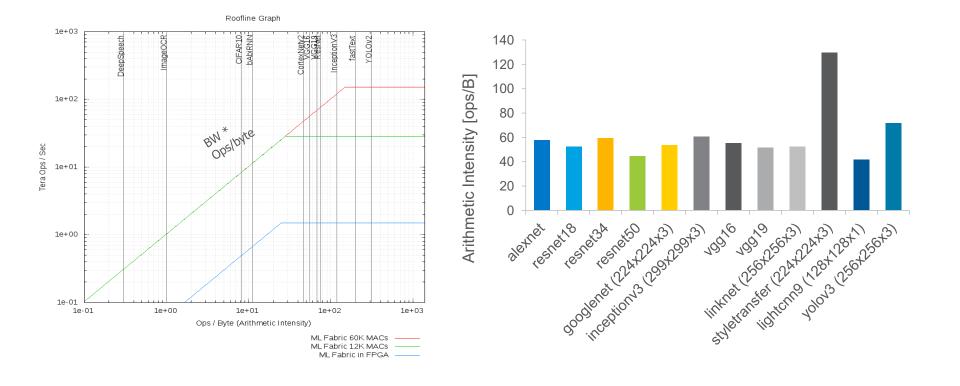
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{pmatrix}$$



Al/Machine Learning provides the capability to get more insight With the larger volumes of data.

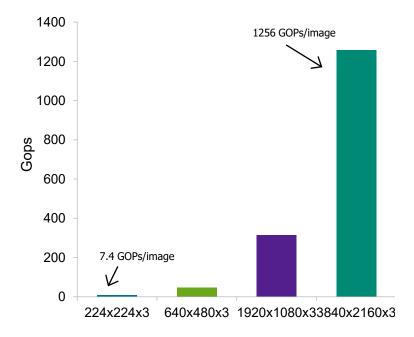


The ratio of compute to memory BW is different for different networks.



Example: BW demands for a ResNet-50 Network vary significantly depending on image resolution.

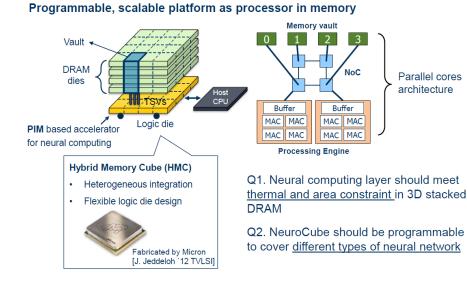
Flexibility of the architecture to 'tune' a network is a must for an optimal solution.



resnet50 input image sizes w/Optimization	Gops	BW/Image (GB/s)	BW (30 Images/s)
224x224x3	7.4	0.17	5.1
640x480x3	45.9	1.03	30.9
1920x1080x3	314.0	7.07	212.1
3840x2160x3	1256.3	28.3	849
resnet50 input image sizes w/o optimization	Gops	BW/Image (GB/s)	BW (30 Images/s)
	Gops 7.4		
sizes w/o optimization		(GB/s)	Images/s)
sizes w/o optimization 224x224x3	7.4	(GB/s) 0.37	Images/s) 11.1

Looking Forward – stacking memory on top of the Compute fabric, we can get high bandwidth, low energy and...yes...modest *capacity*.

Combining memory and processing resources in a single device has huge potential to increase the performance and efficiency of DNNs... (to) achieve... performance in a system that can be generally useful across all problem sets.



https://www.graphcore.ai/blog/why-is-so-much-memory-needed-for-deep-neural-networks

Memory architecture provides insight into the next generation of AI Accelerators

Exploit the unique physics of "emerging memory" technologies for in memory neural fabrics.

- Summing (threshold) and sigmoid (triggering) behavior
- Analog "weight" storage
- Many recent papers based on resistive, magnetic, and floating gate technologies

