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What is a Neuromorphic Computer? 



• A neuromorphic computer is a machine comprising many simple processors / 
memory structures (e.g. neurons and synapses) communicating using simple 
messages (e.g. spikes). 

• Neuromorphic algorithms emphasize the temporal interaction among the 
processing and the memory. 

• Every message has a time stamp (explicit or implicit) 

• Computation is often largely event-driven 

• Neuromorphic computing systems excel at computing complex dynamics 
using a small set of computational primitives (neurons, synapses, spikes). 

 

I think of neuromorphic computers as a kind of “dynamical” computer in which 
the algorithms create complex spatio-temporal dynamics on the computing 
hardware 

What is a Neuromorphic Computer? 



Neuromorphic Computing Hardware Architecture 
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SpiNNaker (“Spiking Neural Network Architecture”) 
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HRL Labs – Neuromorphic Architecture 
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• Spike 

• Simplest possible temporal message 

• Facilitates algorithms inspired by biological neural systems 

• Supports time and rate based algorithms 

• Information “packet”  

• Generalization of spike time message 

• A “spike” that carries additional information 

• Facilitates other dynamical computing architectures using different primitives 

• Routing of spikes / packets 

• Messages can be packaged with an address and routed over a network (e.g. IBM, 
SpiNNaker) 

• Messages can be delivered over a switching fabric (e.g. HRL) 

• Networks can be multiscale – e.g. on core, on chip, off chip 

Messaging 
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• Distributing large amounts of memory (synapses) among many processors 
(neurons) on a single chip. 

• Off-chip memory burns power and taxes memory bandwidth 

• DRAM needs large array sizes to be space efficient and does not integrate into most logic 
processes 

• Back end memory technologies (e.g. memristors, PCM) are immature and not available in SOA 
CMOS  

• Developing a scalable messaging (spiking) architecture. 

• Selection of computational primitives (e.g. neuron and synapse models) 

• Engineering for scale, space and power efficiency 

• Creating a large-scale simulation capability that accurately models the 
neuromorphic hardware  

• Creating tools to develop and debug neural algorithms on the simulator and 
the neuromorphic hardware 

• Writing the algorithms (including those that learn) 

Key Technology Issues / Choices 
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• There are many, many ways to build a neuromorphic computer 

• Although much can be leveraged from conventional computing technologies, 
building a neuromorphic computer requires a large investment in 
development tools 

• Neuromorphic computers can be applied as “control” systems for agents (e.g. 
robots) embedded in a dynamic environment.  

• Neuromorphic algorithms can be replicated on a conventional computer, but 
with much lower efficiency. 

• Biological scale networks are not only possible, but inevitable. 

• The technology issues are challenging but surmountable. 

• The time scale for developing a new memory technology and integrating it 
into SOA CMOS process is much longer than that needed to build a 
neuromorphic computer. 

• The biggest current challenge in neuromorphic computing is defining the 
algorithms – i.e. the structure and dynamics of the network. 

 

 

SyNAPSE – Miscellaneous Lessons Learned 
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Why is Neuromorphic Computing Confusing? 



Build computers that learn and generalize in a broad variety of tasks, 
much as human brains are able to do, in order to employ them in 
applications that require (too much) human effort. 

 

• This idea is at least 40 years old, yet we still don’t have these kinds 
of computers. 

• We have become disillusioned with these ideas in the past because 
the proposition was not fulfilled (AI and neural net “winters”) 

• The proposition is (very) popular again because 

• Maturation of the computing industry 

• The successful application of some machine learning techniques 

• Interest and research on the brain  

Basic neuromorphic / cognitive computing proposition 



Neuromorphic / cognitive computing philosophy 

Cognitive computing views the brain as a 

computer and thinking as the execution of 

algorithms. Cognition = 

computing 

Memory = 

storage of 

data and 

algorithms 

Thinking = 

application of 

algorithms to 

data 
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• Biological memory corresponds to a container 

holding data and algorithms.  Learning fills the 

container with input-output rules defined on 

discrete (AI) or continuous (ANN) variables.   

• Algorithms create input-output mappings using 

rules or weights stored in memory. 

• AI focuses on search algorithms to select 

“production” rules. 

• ANN focuses on iterative error reduction 

algorithms to determine “weights” yielding the 

desired input-output relationships. 

• Algorithms are created by humans. 



 

 

The basic neuromorphic / cognitive computing proposition inappropriately mixes 
ideas and expectations from biological brains and computing. 

 

The Source of Confusion 
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• A neuromorphic computer is another kind of repurposable computing 
platform like a CPU, GPU, FPGA, etc. 

• A neuromorphic computer will be more / less efficient than another 
computing architecture depending on the algorithm 

• A key question in designing a neuromorphic computer is understanding the structure 
of the algorithms it will likely run 

• Neuromorphic computers may be good choices for implementing some 
machine learning algorithms, but these should not be confused with brains 

• A neuromorphic computer is not a brain, although if we were ever to 
figure out how to simulate a brain on a computer, a neuromorphic computer 
would likely be an efficient option. 

Getting it Straight 



What about building a brain? 



• Proposition: By understanding the component parts and functions of the 
brain, we can build brain-like systems from an arrangement of similar 
components. 

 

• Approach: Study the brain as system of components and subsystems and 
infer their relevance to overall brain function.  Create a brain-like system by 
mimicking the components and structure of the brain. 

 

• Example:  Create dynamical models of biological neurons and synapses and 
configure them in a network inspired by brain anatomy.  Implement these 
ideas in software or hardware. 

Reductionist approach 



• What is the appropriate level of abstraction needed to build a brain? 

• What components / functions of the brain correspond to its “computational 
primitives”? 

• How do I distinguish relevant from irrelevant features in a real brain? 

• How do I deal with the interactions among the components? 

• How does neuroanatomy correspond to the brain’s “architecture”? 

• How do I deal with the interactions with a larger environment? 

• Is there an algorithm of the brain that the components execute? 

 

• Reductionism as a strategy to building a brain is equivalent to the basic 
neuromorphic / cognitive computing proposition 

Reductionist conundrum 



• Science shows repeatedly that understanding lower levels of organization is 
insufficient to understand high levels.  In general a new description is 
required at each new level.  For example 

• Chemistry cannot be derived from physics 

• Microbiology cannot be derived from chemistry 

• Organisms cannot be derived from microbiology 

• Ecosystems cannot be derived from organisms 

 

• More is different - Phil Anderson  

Limits of reductionism 



• The (typically massive) interaction / feedback that is characteristic of real 
world systems eliminates the concept of an independent part or piece.  When 
“everything is connected to everything,” it becomes difficult to assign an 
independent function (input-output relationship) to the components.   

• Higher levels of organization evolve from their lower level components in 
response to interaction with their environment. Higher level organization 
depends strongly on influences external to the system of its components. 

Why more is different 



Todd’s Top 10 List of Challenges in Building a Brain 



10. Neuroscience is too little help (tlh) 

• We cannot possibly simulate all the detail of a biological brain 

• We don’t understand the function of very simple nervous systems 

• There are far, far too few “observables” to guide the development of any 
model or technology 



• Too many assumptions 

• Too many parameters 

• No general organizing principle 

• Models are (usually) incomprehensible 

• Unclear connection to applications 

9. Computational Neural Models are tlh 



• Cortical column hypothesis 

• Sparse distributed representations 

• Spiking neural networks, STDP 

• Hierarchies of simple and complex cells 

• Insert your favorite ideas here 

• Spatio-temporal, scale invariance 

• Criticality, critical branching 

• Causal entropic forcing 

8. Other things that are tlh 



• Brains are embodied and bodies are embedded in an environment (Edelman) 

• Testing often requires embedding the neuromorphic computer in a complex 
body /environment. 

7. Whole System Requirement  



• Brains / bodies / environments are complex systems whose large scale 
function (almost certainly) cannot be analytically expressed in terms of its 
lower level structure / dynamics 

• System design methodologies are inadequate because the system cannot be 
decomposed into independent parts 

6. Whole System Interdependence  



• The benchmark for performance comparison is either 

• A human 

• A well-engineered, domain-specific solution 

5. No Easy Path for Technology Evolution 



• Any model that does anything that anyone will care about requires a massive 
computational resource for development and implementation 

• Development is slow and expensive 

• Custom hardware in state of art process is needed for any large scale 
application 

• Software and hardware must co-evolve 

• Cannot develop the algorithms first 

• Cannot specify the hardware first 

4. Massive Computing Resources 



• It is easy for anyone who doesn’t like your project to claim that 

• It is making no progress 

• It is not competitive with the state of the art 

• You are doing it wrong 

• You are an idiot 

• This happened to me regularly at DARPA 

3. Competition for Resources 



• The computer is a blank slate 

• We must generate all the constraints to build a neuromorphic computer 

• Changing computing architecture only changes the classes of algorithms that 
it computes efficiently 

2. Computers can compute anything 



• Brains are thermodynamical, bio/chemo/ physical systems that evolved from 
and are embedded in the natural world 

• Computers are symbolic processors executing algorithms designed by humans 

• Brains designed computers.   

• Can computers design brains? 

 

 

1. Brains are not Computers 



Alternatives Ways of Thinking About Building a Brain 



Perspective – What we need in order to build a brain 
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Computation 

Theory of Computation 
(~1937) Turing, Markov, Von Neumann… 

Electronics Technology 
(~1946) Eniac, Transistor… 

Computational Complexity 
(~1956) Kolmogorov, Trakhtenbrot…   

Practical Computation 
(~1964), IBM 360 

Boolean Logic / Functions 

Theory of Computation 
(~1937) Turing, Markov, Von Neumann… 

Electronics Technology 
(~1946) Eniac, Transistor… 

Computational Complexity 
(~1956) Kolmogorov, Trakhtenbrot…   

Practical Computation 
(~1964), IBM 360 

Intelligence 

Evolution, Complexity, Probability 

Theory of Intelligence 

(New) Electronics Technology 

Implementation Complexity 

Practical Intelligence 

Intelligence & Computation 

Physics is “missing” 
• Thermodynamics 
• Locality 
• Causality 



Life is Autotrophic 

On hydrothermal vents, life is sustained by chemoautrophic bacteria, which derive 
energy and materials from purely inorganic sources.  These bacteria provide an efficient 
means to consume energy through a chemical cascade that would otherwise not be 
possible.  At the ecosystem level, all life is autotrophic in that it is derived from inorganic 
sources (and sunlight).  In general, life provides a means to relieve chemical potential 
“gradients” that could not otherwise be accessed (because of energetic activation 
barriers). 



Thermodynamically Evolved Structures 



Conceptual Issues – Foundations of Computing 

• Observation - The Turing machine (and its 
many equivalents) is the foundational idea in 
computation and has enabled decades of 
success in computing, but 

– The machine is an abstraction for symbol 
manipulation that is disconnected from the 
physical world. 

– Humans provide contact with the physical 
world via the creation and evaluation of 
algorithms. 

• Question – With such foundation, is it 
reasonable to suppose that the machine can 
understand, adapt and function in a complex, 
non-deterministic, evolving problem or 
environment? 

 

Turing Machine 
“Head” w/ Fixed Rule Table 

(Finite State Machine) 

“Tape” (Program & Data) 

Complete System 

Value, Creativity, Semantics & Context 

Algorithms 

Hypothesis #1: Intelligence concerns the ability to create (useful) algorithms. 



Evolution of Intelligence 

physical 
energy 

biological 
evolution 

psychological 
stimulus-
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gnoseological 
cognition & 

mind 
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Current Paradigm: Cognitive Computing 

• Brains are universal computers   

• Algorithms determine behavior 

• Memory = storage of data and algorithms 

• Thinking = application of algorithms to data 

• Intelligence is algorithmic 

• Intelligence  computation 

input output 

unphysical, static, unscalable, 
black-box efforts targeting the 
highest levels of intelligence 

Today’s Approach 

Where do algorithms come from? 

Hypothesis #2: Intelligence is part of a pervasive evolutionary paradigm that applies to 
the physical and biological world. The computational metaphor for intelligence is 

inadequate.  Intelligence is physical. 
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Thermodynamics of Open Systems 
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Isolated System 

• S = Entropy 

• S(t)  Smax  

• dS/dt > 0  

Open System 

• S=Sext+ Sint  

• dS/dt > 0  

 dSint/dt < 0 

• dS/dt  (dS/dt)max ? 

Open thermodynamic systems spontaneously evolve structure via entropy production 
in the external environment. 



Thermodynamic Evolution Paradigm 

Entity Environment 
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• Entities extract resources from their environment through evolutionary variation & selection. 

• Entropy production rate selects for (Algorithmic) Structure / Memory among entropic variations.   

• (Algorithmic) Structures / Memories constrain the variation repertoire in future selections.   

• Entities are distinguished from their environment by their level of integration. 



Example Evolving System 
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Neural systems qualitatively fit the thermodynamic evolution paradigm. 



Structure Growth, Integration & Scaling 
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Structure Growth, Integration & Scaling 
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Computing in the Physical Intelligence Framework 
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Computers enhance our ability to extract energy and resources from the environment 
by allowing us to evolve and use larger, faster and more complex algorithms.   



Closing Thoughts 



• End of semiconductor scaling clearly in sight 

• Numerous large scale efforts in neuromorphic computing now exist 

• Community has substantially grown 

• Several example systems now exist 

• Deep learning algorithms have matured and are being deployed 

• BRAIN Initiative and Human Brain Project have been announced/started 

What has changed in 7 years 



Dynamical Algorithms 

• Represent systems of coupled dynamical equations 

• not just feedforward networks 

• Interact in real-time in the real world (e.g. robotics) 

• Tough to conceive, tough to “debug” 

Typical Questions 

• What are the plasticity/adaption rules? / What are the dynamical equations? 

• What network should I build?  

• What is the effect / interaction of the components with the system? 

• What / how should I test it? 

• How can I figure out what is wrong? 

• How do I make it do something (that I want it to do)? 

Think “Algorithms” and not “Brains” when building a NC 

47 5/15/2014 



What We Can Do 

• Build new kinds of computers that are capable of efficiently executing new 
classes of algorithms 

• Build better machine learning algorithms 



• Separate/classify effort into 2 domains 

• Aspirational efforts focused on building a brain (the basic NC proposition) 

• Practical efforts focused on building new, useful computers 

• Avoid the temptation to straddle both domains 

Recommendation 



Backup 



• Communications 

• Digital – no controversy 

• Neurons 

• Digital – computed dynamics, scales, reproducible, multiplexes, parameterizes  

• Analog – intrinsic dynamics, low power 

• Synapses 

• Digital – computed dynamics, scales, reproducible, multiplexes, parameterizes  

• Analog – intrinsic dynamics, low power 

• State of the art CMOS technology and design practice generally favors digital 
implementations 

• Groups of highly multiplexed, digital neurons and synapses resemble small 
processor cores with dedicated memory (like SpiNNaker) 

• Mixed analog-digital solutions are also possible 

Digital or Analog? 
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• We will build a computer to enable (for example)  

• computational neuroscientists to efficiently model large neural systems. 

• analysts to more easily understand video 

 

• Comment: This kind of proposition is a long way from an engineering 
specification. 

User Focused NC Proposition 



• We will build a computer that efficiently computes certain (classes of) 
machine learning algorithms 

 

• Comment: This kind of proposition can lead to narrowly focused systems 
(ASICs). 

Algorithm Focused NC Proposition 



• We will build a computer featuring the following architectural concepts (for 
example)  

• SDR 

• event-based execution, asynchronous communication 

• highly distributed simple cores within a dense memory  

• neural/synaptic/columnar computational primitives,  

• criticality/homeostasis…. 

• Comments:  

• Before any specification can be created, a description like this is required 

• It isn’t obvious from such propositions what the computer will be good at / used for. 

Architecture Focused NC Proposition 



The Evolution of NC Has Begun 

USER STORIES 

ALGORITHMS 

ARCHTECTURES 

IMPLEMENTATIONS 


