
1 | P a g e  
 

                                   

RCS 4 

4th Rebooting Computing Summit 
“Roadmapping the Future of Computing” 

Summary Report 

 
Washington Hilton 

Washington, DC  

December 9-11, 2015 

 

 

 

 

 

Prepared By: 

IEEE Rebooting Computing Committee 

http://rebootingcomputing.ieee.org/  

January 2016 

 

 

 

 

Sandia National Laboratories R&A Tracking Number: 386789. 

Approved for unlimited, unclassified release. 

http://rebootingcomputing.ieee.org/


2 | P a g e  
 

Contents 

Foreword ....................................................................................................................................................... 4 

IEEE Rebooting Computing Committee ........................................................................................................ 5 

Previous RC Summits .................................................................................................................................... 6 

RCS 1:  Future Vision and Pillars of Computing ......................................................................................... 6 

Future Vision of Intelligent Mobile Assistant ........................................................................................ 6 

Three Pillars of Future Computing ........................................................................................................ 6 

RCS 2:  Future Computer Technology – The End of Moore’s Law? .......................................................... 7 

RCS 3:  Rethinking Structures of Computation ......................................................................................... 8 

RCS 4 Brief Meeting Summary ...................................................................................................................... 9 

RCS 4 Plenary Talks ................................................................................................................................... 9 

Track 1: Approximate/Probabilistic Computing .................................................................................... 9 

Track 2: Extending Moore’s Law ........................................................................................................... 9 

Track 3:  Neuromorphic Computing/Sensible Machines ....................................................................... 9 

Extra Track 4: Superconducting Computing .......................................................................................... 9 

Reviews of Other Future Computing R&D Programs ................................................................................ 9 

Poster Session ........................................................................................................................................... 9 

IEEE Competition for Low-Power Image Recognition ............................................................................... 9 

Sensible Machine Grand Challenge After-Session .................................................................................... 9 

Technical Summary of RCS 4 ....................................................................................................................... 10 

Multiple Paths to the Future ................................................................................................................... 10 

Continued Evolution of Transistors (Track 2) .......................................................................................... 11 

Tunnel FETs and MilliVolt Switches .................................................................................................... 12 

3D Manufacture ...................................................................................................................................... 12 

Probabilistic Computing (Track 1) ........................................................................................................... 13 

New Devices and New Approaches to Computing (Tracks 1, 2, and 3) .................................................. 14 

Advanced memories ........................................................................................................................... 16 

Neural Networks ................................................................................................................................. 16 

Matrix Algebra Engines ....................................................................................................................... 17 

Precision .............................................................................................................................................. 17 

General Logic....................................................................................................................................... 18 

Sensible Machine and Grand Challenge ............................................................................................. 18 

Superconducting Technologies ............................................................................................................... 19 



3 | P a g e  
 

National Scale Programs ......................................................................................................................... 20 

Conclusions and Looking Ahead ................................................................................................................. 21 

The Future of Computing ........................................................................................................................ 21 

RCS Publications, Roadmaps, and Future Conferences .......................................................................... 21 

Appendices .................................................................................................................................................. 22 

Appendix A:  Agenda for Rebooting Computing Summit 4 (RCS4) ......................................................... 22 

Appendix B:  RCS 4 Participants .............................................................................................................. 23 

Appendix C:  Group Outbrief on Probabilistic ......................................................................................... 25 

Appendix D: Group Outbrief on Beyond CMOS ...................................................................................... 27 

Appendix E: Group Outbrief on Neuromorphic Computing ................................................................... 28 

Appendix F: Poster Abstracts .................................................................................................................. 29 

References .................................................................................................................................................. 34 

 



4 | P a g e  
 

Foreword 
“IEEE Rebooting Computing” is an inter-society initiative of the IEEE Future Directions Committee to 

identify future trends in the technology of computing, a goal which is intentionally distinct from 

refinement of present-day trends. The initiative is timely due to the emerging consensus that the 

primary technology driver for 5 decades, Moore’s Law for scaling of integrated circuits, is finally ending. 

How can we continue to project further improvements in computing performance in coming decades? 

We need to review the entire basis for computer technology, starting over again with a new set of 

foundations (hence “Rebooting Computing”). The need for new approaches has also been recognized by 

other organizations. The semiconductor industry’s International Technology Roadmap for 

Semiconductors is now ITRS 2.0, with a new thrust that goes beyond Moore’s Law scaling. Furthermore, 

the US Government has initiated several major programs in future computing, including the National 

Strategic Computing Initiative (NSCI), as well as a nanotechnology-inspired Grand Challenge for Future 

Computing. 

The 1st Rebooting Computing Summit in Dec. 2013 (RCS 1), brought together decision makers from 

government, industry, and academia, to lay initial foundations for Rebooting Computing. This generated 

a vision of future computing based on three pillars of Energy Efficiency, Security, and Applications. RCS 2 

in May 2014 focused on four technologies for further discussion, a mainstream approach of Augmenting 

CMOS, together with alternative approaches of Neuromorphic, Approximate, and Adiabatic Computing. 

RCS 3 in Oct. 2014 further addressed the topics of Parallelism, Security, Random Computing, and 

Human-Computer Interface. RCS 4, held in Washington DC, Dec. 9-11, 2015, continued this effort, 

elaborating four complementary tracks for enhancing future computer performance, consisting of 

Probabilistic, Neuromorphic, and Superconducting Computing, as well as Beyond CMOS System 

Integration. 

In order to implement this program more effectively, Rebooting Computing executed a Memorandum of 

Understanding with ITRS in 2015, for the two organizations to work together to achieve common goals 

of advancing the future of computer technology. As part of this joint program, RC participated in ITRS 

Workshops in February and July 2015, and ITRS played a key role in RCS 4. 

In addition, RC sponsored a special issue of IEEE Computer Magazine in December 2015, with seven 

articles on the theme of Rebooting Computing. These articles cover many of the same themes of RCS 4, 

and we recommend them as further reading. 

Finally, the RC Web Portal (http://rebootingcomputing.ieee.org) contains information and presentations 

from all of the RC Summits, as well as ongoing programs, feature articles and videos, and news related 

to Rebooting Computing 

Elie Track and Tom Conte, Co-Chairs, IEEE Rebooting Computing 

Erik DeBenedictis and David Mountain, Co-Chairs, RCS 4 

http://rebootingcomputing.ieee.org/
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IEEE Rebooting Computing Committee 
The RC Summits were sponsored and organized by the RC Committee, which consists of volunteers from 

nine IEEE Societies/Councils and two professional IEEE staff directors. Members and Participating 

Societies are listed below. 

Participating IEEE Societies and Councils 

Circuits and Systems Society (CAS), Council on Electronic Design Automation (CEDA), Computer Society 

(CS), Council on Superconductivity (CSC), Electron Devices Society (EDS), Magnetics Society (MAG), 

Nanotechnology Council (NTC), Reliability Society (RS) and Solid-State Circuits Society (SSC). Also, 

coordination with International Technology Roadmap for Semiconductors (ITRS) and Semiconductor 

Research Corp. (SRC). 

Co-Chairs of RC Committee: 

 Elie K. Track (CSC) 

 Tom Conte (CS) 

 

Other Committee Members: 

 Dan Allwood (MAG) 

 Neal Anderson (NTC) 

 David Atienza (CEDA) 

 Jesse Beu (CS) 

 Jonathan Candelaria (EDS) 

 Erik DeBenedictis (CS) 

 Paolo Gargini (ITRS) 

 Glen Gulak (SSC) 

 Steve Hillenius (SRC) 

 Bichlien Hoang, RC Program Director 

 Scott Holmes (EDS, CSC) 

 Subramanian (Subu) Iyer (EDS, CPMT, SSC) 

 Alan M. Kadin (CSC) 

 Arvind Kumar (EDS) 

 Yung-Hsiang Lu (CS) 

 David Mountain (EDS, CS) 

 Oleg Mukhanov (CSC) 

 Vojin G. Oklobdzijja (CAS) 

 Angelos Stavrou (RS),  

 Bill Tonti (RS), IEEE Future Directions 

 R. Stanley Williams (EDS) 

 Ian Young (SSCS) 
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Previous RC Summits 

RCS 1:  Future Vision and Pillars of Computing 
The first Rebooting Computing Summit was held at the Omni Shoreham Hotel in Washington, DC, Dec. 

11-12, 2013.  This invited 37 leaders in various fields in computers and electronics, from industry, 

academia, and government, and included several plenary talks and smaller breakout discussion groups.  

The summary is available online at http://rebootingcomputing.ieee.org/RCS1.pdf.  The consensus was 

that there is indeed a need to “reboot computing” in order to continue to improve system performance 

into the future.  A future vision and three primary pillars of future computing were identified.   

Future Vision of Intelligent Mobile Assistant 
One future vision for 2023 suggested in RCS 1 consisted of ubiquitous computing that is fully integrated 

into the lives of people at all levels of society.  One can think of future generations of smartphones and 

networked sensors having broadband wireless links with the Internet and with large computing engines 

in “the Cloud.”  More specifically, one may envision a wireless “intelligent automated assistant” that 

would understand spoken commands, access information on the Internet, and enable multimedia 

exchange in a flexible, adaptive manner, all the while maintaining data security and limiting the use of 

electric power.  And of course, such a wireless assistant should also be small and inexpensive.  Such a 

combination of attributes would be enormously powerful in society, but are not yet quite achievable for 

the current stage of computer technology.   

Three Pillars of Future Computing 
RCS 1 further identified 3 “pillars” of future computing that 

are necessary to achieve this vision:  Energy Efficiency, 

Security, and Human-Computer Interface. 

Human/Computer Interface and Applications 

A better Human/Computer Interface (HCI) is needed that 

makes more efficient use of natural human input/output 

systems, particularly for small mobile units.  Improved 

natural language processing is just one key example.  While 

there is a long history of text I/O, this is not really optimal.  

Wearable computers analogous to Google Glass may 

provide a glimpse into future capabilities. 

Energy Efficiency 

The small wireless units operate on battery power, and it is essential that they consume as little power 

as possible, so that the recharging is relatively infrequent.  Some computing can be shifted to “the 

cloud,” but enhanced performance requires substantial improvements in energy efficiency.  In contrast, 

the data centers and servers in the cloud are wired, but their power consumption can be quite large, so 

that electricity bills are a major cost of operation.  Improved energy efficiency is critical here, as well. 

Security 

With data moving freely between wireless units and computers in the cloud, encryption and computer 

security are critical if users can expect to operate without fear of data diversion and eavesdropping.   

http://rebootingcomputing.ieee.org/RCS1.pdf
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RCS 2:  Future Computer Technology – The End of Moore’s Law? 
RCS 2 consisted of a 3-day workshop May 14 - 16, 2014, at the Chaminade in Santa Cruz, CA. The 

summary is available online at http://sites.ieee.org/rcsummit/rcs2/. The main theme of RCS 2 was on 

mainstream and alternative computing technologies for future computing, with four possible 

approaches identified. The format was similar to that for RCS 1, with a set of four plenary talks, followed 

by four parallel breakout groups culminating in outbrief presentations and concluding in a final plenary 

discussion. The primary conclusions were that focusing on energy efficiency and parallelism will be 

necessary to achieve the goals of future computing, with complementary roles for both mainstream and 

alternative technologies. 

Augmenting CMOS 

Silicon CMOS circuits have been the central technology of the digital revolution for 40 years, and the 

performance of CMOS devices and systems have been following Moore's law (doubling in performance 

every year or two) for the past several decades, together with device scaling to smaller dimensions and 

integration to larger scales. CMOS appears to be reaching physical limits, including size and power 

density, but there is presently no technology available that can take its place. How should CMOS be 

augmented with integration of new materials, devices, logic, and system design, in order to extend 

enhancement of computer performance for the next decade or more? This approach strongly overlaps 

with the semiconductor industry roadmap (ITRS), so RCS 2 coordinated this topic with ITRS.  

Neuromorphic Computing 

A brain is constructed from slow, non-uniform, unreliable devices on the 10 m scale, yet its 

computational performance exceeds that of the best supercomputers in many respects, with much 

lower power dissipation. What can this teach us about the next generation of electronic computers? 

Neuromorphic computing studies the organization of the brain (neurons, connecting synapses, 

hierarchies and levels of abstraction, etc.) to identify those features (massive device parallelism, 

adaptive circuitry, content addressable distributed memory) that may be emulated in electronic circuits.  

The goal is to construct a new class of computers that combines the best features of both electronics 

and brains. 

Approximate Computing 

Historically computing hardware and software were designed for numerical calculations requiring a high 

degree of precision, such as 32 bits. But many present applications (such as image processing and data 

mining) do not require an exact answer; they just need a sufficiently good answer quickly. Furthermore, 

conventional logic circuits are highly sensitive to bit errors, which are to be avoided at all cost. But as 

devices get smaller and their counts get larger, the likelihood of random errors increases. Approximate 

computing represents a variety of software and hardware approaches that seek to trade off accuracy for 

speed, efficiency, and error-tolerance. 

Adiabatic/Reversible Computing 

One of the primary sources of power dissipation in digital circuits is associated with switching of 

transistors and other elements. The basic binary switching energy is typically far larger than the 

fundamental limit ~kT, and much of the energy is effectively wasted. Adiabatic and reversible computing 

describe a class of approaches to reducing power dissipation on the circuit level by minimizing and 

reusing switching energy, and applying supply voltages only when necessary.  

http://sites.ieee.org/rcsummit/rcs2/
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RCS 3:  Rethinking Structures of Computation 

RCS 3 consisted of a 3-day workshop October 23-24, 2014, at the Hilton in Santa Cruz, CA. The summary 

is available online at http://rebootingcomputing.ieee.org/rc-summits/rcs3. RCS 3 addressed the theme 

of “Rethinking Structures of Computation”, focusing on software aspects including HCI, 

Random/Approximate Computing, Parallelism, and Security.  These are some of the conclusions. 

4th Generation Computing  

Computing is entering a new generation, characterized by world-wide networks coupling the Cloud with 

a variety of personal devices and sensors in a seamless web of information and communication. This is 

more than just the Internet or the Internet of Things; it also encompasses Big Data and financial 

networks. This presents new challenges, and will require new sets of tools on every level, with 

contributions needed from industry, academia, and government.  

Dynamic Security for Distributed Systems  

One key challenge is in the area of computer security. Current security systems represent a patchwork 

of solutions for different kinds of systems. What is needed is a universal, forward-looking set of 

protocols and standards that can apply to all parts of the distributed network, with a combination of 

simple hardware and software building blocks. These must also be dynamic and capable of being 

updated to reflect newly recognized system features and threats.  

Ubiquitous Heterogeneous Parallelism  

Parallelism will be a central feature of future computing, even if an alternative technology should take 

hold. This will be massive parallelism for high-performance computing, but even personal devices will be 

parallel in nature. In many cases, these parallel processors and memories will be heterogeneous and 

distributed. This represents a strikingly different paradigm than the conventional von Neumann 

machine, and may require rethinking many of the foundations of computer science.  

Adaptive Programming  

High-level programming needs to operate efficiently on a wide variety of platforms. This may require 

providing high-level information (e.g., on parallelism, approximation, memory allocation, etc.) that can 

be properly optimized by the compiler or system software. Furthermore, the system should learn to 

become more efficient based on the results of repeated operations and appropriate user feedback, i.e., 

it should exhibit long-term adaptive learning.  

Vision of Future Human-Centric Computing  

Prof. Greg Abowd (Georgia Tech) identified the new generation of Complementary Computing, where 

the boundary between computer and human is blurred. Others have asserted that a personal computing 

device should be programmed to act in the best interests of each individual. Finally, for an optimum 

human-centric computing system, the computing devices should be adapted to the needs and 

preferences of the individual human user, rather than the human adapting to the needs of the computer 

or the programmer. We have already seen the start of this revolution, but the ending is still being 

imagined. 

http://rebootingcomputing.ieee.org/rc-summits/rcs3
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RCS 4 Brief Meeting Summary 
The fourth IEEE Rebooting Computing Summit (RCS 4), organized by the Rebooting Computing Initiative 
of the IEEE Future Directions Committee (FDC), was held on December 9-11, 2015 at the Washington 
Hilton, Washington, DC. RCS 4 included 73 invited participants from industry, academia, and 
government. RCS 4 built on RCS 1, 2, and 3, held in 2013 and 2014, with a theme of “Roadmapping the 
Future of Computing: Discovering How We May Compute.” The agenda is shown in Appendix A. 

RCS 4 Plenary Talks 
RCS 4 began with introductions by RC co-chairs Tom Conte and Elie Track, and RCS 4 Co-Chairs, Erik 

DeBenedictis and David Mountain. The Summit was organized around 4 Technical Tracks, consisting of 3 

primary tracks and a 4th extra track, with invited talks as shown below. The slides from these talks are 

available on the RC Web Portal http://rebootingcomputing.ieee.org.  

Track 1: Approximate/Probabilistic Computing 

Laura Monroe, Los Alamos – Probabilistic and Approximate Computing 
 Santosh Khasanvis, BlueRiSC – Architecting for Nanoscale Causal Intelligence 

Track 2: Extending Moore’s Law 

Kirk Bresniker, Hewlett Packard Labs – Memory Abundance Computing 
 Philip Wong, Stanford – Computing Performance – N3XT 1000X 
 Additional talks by Ian Young, Suman Datta, Matt Marinella, and Eli Yablonovitch 

Track 3:  Neuromorphic Computing/Sensible Machines 

 Stan Williams, Hewlett Packard Labs – Sensible Machine Grand Challenge 
 David Mountain, NSA – Neuromorphic Computing for NSA Applications 
 Additional talk by John Paul Strachan 

Extra Track 4: Superconducting Computing 

Marc Manheimer, IARPA – Cryogenic Computing Complexity Program 

Reviews of Other Future Computing R&D Programs 
The Summit included brief overviews of a range of other Future Computing programs sponsored by 
government and industrial consortia: ITRS 2.0, SRC, NSCI, OSTP Grand Challenge, DARPA, and IARPA 

Poster Session 
A Poster Session was held with 13 posters covering a wide range of topics related to these tracks and 
initiatives. See Appendix F for the Poster Abstracts. 

IEEE Competition for Low-Power Image Recognition 
Purdue Prof. Yung-Hsiang Lu described an IEEE prize competition, focusing on Low-Power Image 

Recognition using a mobile device, held in 2015 [Lu poster]. This involved presentation of a set of test 

images to the device, and a limited time to accurately identify the images. This will be held again in 

2016; see http://lpirc.net/ for details. 

Sensible Machine Grand Challenge After-Session 
Finally, after the formal end of RCS 4 on Dec. 11th, a special meeting was held to continue discussion on 
the Sensible Machines Grand Challenge. 
 

While the various tracks featured quite different approaches for Rebooting Computing, there was 
general agreement that there may be an important role for all of these in different parts of future 
computing technology. Exponential improvement in computing performance may continue, but not via a 
single transistor scaling rule as in Moore’s Law in the past. 

http://rebootingcomputing.ieee.org/
http://lpirc.net/
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Technical Summary of RCS 4  
There is a widespread concern that the traditional rate of improvement for mainstream computer 

technology (transistors and the von Neumann computer architecture/microprocessor) is in jeopardy, but 

there is hope that new approaches to computing can keep growth rates at historical levels. This section 

organizes ideas on this topic that were presented at RCS 4. 

RCS 4 confirmed that roadmaps for transistors and the von Neumann computer architecture are 

essentially on track for about the next decade, with RCS 4 also giving considerably more clarity to some 

of the new approaches expected to dominate in the longer term. In summary, the semiconductor 

industry will drive transistors to a state of high maturity over the next decade while starting to 

manufacture initial versions of new non-transistor devices for the era beyond. The new devices are 

expected to support a different mix of computing capabilities, following evolving trends in the types of 

problems people want to solve. 

The group of research interests represented at RCS 4 may collectively “reboot computing” by 

augmenting transistors with new devices that have both state (memory) and an energy efficient 

computational capability, and complemented by new general-purpose architectures that have been 

inspired from the brain. This new approach would seem consistent with existing industry plans, yet 

seems to be more ambitious and highlights a need for further research. In particular, co-design activities 

will become more important – iteratively improving algorithms, architectures, and technologies to 

provide improvements in power, performance, and cost at the application level over time. 

Multiple Paths to the Future 
The organizers structured the meeting around multiple alternative paths or road maps for the future of 

computing. As illustrated in Figure 1, the computer industry developed a stack of mutually-supporting 

technologies that have grown as a group since the 1940s. Continued growth will require adding some 

technology to the stack, but the new technology could appear at various levels. The organizing theme 

for RCS 4 is that new technology will be added at different levels and yield several viable solutions. It 

seems likely that today’s CMOS-microprocessor systems will persist over the long term by addition of 

improved transistors and transition to 3D, but one or more of the other approaches may emerge and be 

economically successful as well. The task of RCS 4 was primarily to present and discuss the most 

promising alternative approaches. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Multiple paths to the future in computing 
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RCS 4 included consideration of a variety of new technology approaches, including new switches and 3D 
architectures, superconducting, probabilistic, approximate, and neuromorphic computing. While 
Quantum computing has great potential, it was only mentioned briefly by the director of IARPA due to 
its low maturity. 
 

Continued Evolution of Transistors (Track 2) 
Paolo Gargini, chairman of the International Technology Roadmap for Semiconductors 2.0 (ITRS 2.0) 

provided a vision for transistor evolution at RCS 4 [Gargini Wed 10:45] based on papers at the IEDM 

conference at the same hotel earlier in the week. 

The concern about transistor evolution focuses on the energy per Boolean logic operation in a 

computer, which is dependent on supply voltage V and wire capacitance C. The energy of a Boolean 

operation can be represented for the purposes of this section as CV2, or the product of capacitance and 

the square of voltage. Figure 2 shows time graphs of C (red), V2 (green), and their product CV2 (blue), 

where the product is shown as the sum of the two graphs on a logarithmic scale. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Energy per operation based on MOSFET, TFET (milliVolt switch), and 2D/3D 

 

The red curve for V2 in Figure 2 shows the scaling or time evolution of supply voltage in integrated 

circuits, with a potential split ~2015 (i. e. now) due to the development of a new transistor type (to be 

described below). 

The green curve for C shows wire capacitance as the number of devices on a chip increases. Lower 

capacitance results from shortening wires due to a rising number of devices on chips of constant size, 

but device shrinkage is expected to end around 2025. The green curve thus shows capacitance flat-lining 

for the current 2D scaling scenario, but scaling could continue if 3D manufacture becomes practical 

because the tighter packing of devices in 3D will further shorten wires. 3D logic is problematic, as will be 

described below. 
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The blue curve for CV2 shows how technology that (a) reduces supply voltage and (b) enables 3D 

manufacturing will create four scaling scenarios. The hope is that industry can shift from the current 

path of “MOSFET/2D” to “TFET/3D” to both assure a near-continuous improvement path as well as a 

more energy-efficient end point for transistor when transistor scaling stops. 

Tunnel FETs and MilliVolt Switches 
The preeminent form of logic has been Boolean Logic implemented with transistors in the role of 

switches. Reducing the size of MOSFET transistors has improved power efficiency so much that parasitic 

leakage current, technically called “kT/q sub threshold slope” now dominates. Leakage current is a 

property of MOSFETs irrespective of size, so Moore’s Law will not help. Unchecked, this leakage current 

would mean chips could hold more transistors over time just as predicted by Moore, but power per 

transistor would remain constant. Microprocessors use an architectural remedy to avoid overheating, a 

remedy that would need to be used in a more extreme form over time. The remedy is to replace a 

growing fraction of a chip’s logic with memory. Memory dissipates less power per unit area, so this 

reduces overall power per chip. This will make chips less capable than their potential, but it is not 

feasible to sell chips that overheat. The MOSFET branch of the red curve in Figure 2 started to flat-line 

around 2003, coincident with the emergence of multi-core processors. 

Current developments reported at IEDM earlier in the week and then at RCS 4 reported progress on a 

potential MOSFET successor called the Tunnel FET (TFET). The TFET could become the first member of a 

class of proposed devices called milliVolt switches [Yablonovitch Fri 10:00] to reach production. The 

situation a year ago is that there was diligent search underway for transistors that, when used in a 

Boolean logic circuit, would have a sub threshold slope of less than kT/q = 60 mV/decade. The consensus 

of experts at the time was that this level of transistor performance is physically feasible and inevitable, 

but there were no experimental demonstrations and nobody had an idea of when the experiments 

would occur. However, IEDM included a handful of papers showing some critical experiments had 

occurred in the last year [Pandey 15]. Suman Datta summarized his results at RCS 4 [Datta Fri 10:30] 

showing experimental demonstration of 55 mV/decade for one of two types of TFET (NTFET), beating 

the 60 mV/decade by 5 mV (lower sub threshold slope is better). 

While experimentally beating the limits of the MOSFET by 10% or so is tantalizing and may lead to 

commercial advances, Eli Yablonovitch gave a talk [Yablonovitch Fri 10:00] on more ambitious research 

goals that would be needed to fully realize the potential of milliVolt switches. The TFET curve in Figure 2 

shows how further advances could allow a reduction in power supply voltage until the cumulative 

reduction of energy per operation reaches 10 to 100 and a thermal noise reliability limit is reached. 

This boost would make a difference in computer usage worldwide, but is still not enough to reestablish 

the expectations of Moore’s Law. Eli Yablonovitch forsees additional long-term possibilities. Large power 

efficiency improvements are also possible from adiabatic and reversible computing, such as [Snider 

poster]. 

3D Manufacture 
There is also progress in a partial transition of from 2D to 3D chips, another advance that will be 

important although not enough by itself to restore Moore’s Law [Bresniker Thu 12:30][Wong Thu 

12:30][Kumar poster]. In the last year or so, multiple vendors started selling memory and/or storage 

chips using cost-efficient layered manufacturing. The layered manufacturing is likely to extend Moore’s 

Law into the third dimension, yet limited to memory. 
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The original Moore’s Law essentially scales linear dimensions in the X-Y plane of an integrated circuit. 

The newer 3D scaling keeps dimensions fixed in the X-Y plane but increases the number of layers in the Z 

dimension. Combining both 2D and 3D scaling may enable historical scaling trends to continue while 

reducing the pace of technology development required for either factor. 

Currently, there are competitively priced Solid State Disks (SSDs) available from consumer vendors 

[Amazon 15] comprised of 32 layers of Flash storage. The vendors boast that the next generation will be 

48 layers [Samsung 15]. The rapid rate with which traditional single-layer chips became 32 layers and 

the sizes of the increases is reminiscent of Moore’s Law. The combination of TFETs and 3D memory 

should allow more energy-efficient execution of existing software and new software of the current type, 

including on smartphones, servers, and supercomputers. 

However, 3D for logic is somewhat more problematic. Overheating would be a problem due to just a 2D 

surface for heat removal from a 3D solid – even with TFET/milliVolt switches on the red curve of Figure 

2. Manufacturing imperfections in memory can be addressed with Error Correcting Codes (ECC), which is 

much more difficult to apply to logic. 3D manufacturing would be of a definite benefit, but long term 

benefits would require advances in manufacturing and computer architecture to deal with heat and 

reliability issues. 

The outbrief by Paolo Gargini [Fri 11:00] concluded that the advances described above for transistors 

and 3D should be sufficient to drive industry expansion over the next decade, at which time other 

devices now in the research pipeline would be ready (as described below). 

Probabilistic Computing (Track 1) 
Laura Monroe gave an overview talk on probabilistic and approximate computing [Monroe Thu 8:45], 

followed by Dave Mountain and Laura Monroe leading a track on these topics. These approaches build 

naturally on the results of track 2 above. 

If it is assumed that TFETS and milliVolt switches will become part of the technology mix, pressure from 

the user community is expected to drive continued reduction of component size and component energy 

consumption until scaling is stopped by other issues. 

The issues are believed to be known at this time, and fall into two categories: (a) Tolerances and defects 

in a given manufacturing technology will stop scaling due to errors resulting from too weak and faulty 

devices. Progress in manufacturing is expected to reduce this type of error over time, but progress in 

manufacturing cannot continue forever due to the discrete nature of atoms. (b) Thermal noise will cause 

an exponentially rising error rate as signal energy approaches kT, an effect that is fundamental to 

Boolean logic. Mitigating this effect with non-Boolean logic will be deferred to the later section on track 

3. 

Since scaling-induced errors rise continuously as opposed to having an abrupt onset, the ability to 

manage a moderate number of errors can extend scaling. If errors are not considered in advance, scaling 

would need to stop at the point where the chance (or certainty) of an error exceeds user-originated 

reliability requirements for an application. This is because any error at run time could propagate to 

become a system crash or an incorrect answer being given to the end user. However, scaling could 

continue further if the computer had the ability to manage one error per N operations (or memory bits) 

sufficiently well that the end user remained satisfied. The most effective method and the value of N vary 

by the problem being solved. 
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The methods considered by this track were approximate, probabilistic and stochastic computation. We 
distinguish between these, and in particular between approximate and probabilistic, which are often 
conflated.   

Approximate computation is designed to come appropriately close to a correct answer, whether 
through use of reduced precision or through numerical methods. It may be deterministic. Probabilistic 
computation calls upon probabilistic reasoning on the underlying hardware or the data. It is non-
deterministic by nature, so need not give the same results between runs. However, the results in a 
probabilistic calculation should average out to a correct result over repeated runs. Approximate and 
probabilistic compute methods thus are inherently different, but there are approaches that combine the 
two. 

Approximate computing can be used for applications that can tolerate slightly inaccurate results. The 
decision to be made is the degree of approximation that may be tolerated. A typical example of 
approximate computing is a video playback where the human viewer may be willing to tolerate some 
inaccuracy in color reproduction in exchange for longer battery life. Another example is deterministic 
digital computation, which approximates floating point calculations to the precision allowed in the 
hardware or software. 

Probabilistic computing applies when a computer system is expected to deliver accurate results to the 
user, yet the underlying components produce errors due to their own inaccuracy or due to custom-built 
non‐determinism. The decision to be made here is the degree to which incorrect results can be 
tolerated, i.e., the probability whether and by how much the result will differ from the correct result.  

One example of probabilistic computing is when the underlying computer hardware has had voltage 
scaled down so far that logic gates make too many mistakes for the system to meet stringent reliability 
requirements. Management of these errors often includes error detection codes for logic/memory, with 
detection followed by recovery and rerunning the erroneous computations. Another approach is to use 
fault‐tolerant algorithms. For example, if an error occurs in an iterative algorithm that converges to the 
correct answer, an error may simply lead to more iterations before convergence. Finally, the calculation 
may simply be run and the results used if the application is sufficiently tolerant of the given probability 
of an incorrect result. 

Stochastic computing is a form of probabilistic computing is where algorithms rely on random numbers, 
such as Monte Carlo simulations. In these algorithms, components that have been scaled so far that 
they produce random errors can be used as extremely energy efficient random number generators.  

Approximate, probabilistic, and stochastic methods all require a good understanding of the underlying 

physics, methods for ascertaining which energy efficiency gains might be possible and at what cost 

[Anderson poster], and strategies for realizing systems that achieve maximum efficiency gains with 

minimum loss of computational efficacy. 

New Devices and New Approaches to Computing (Tracks 1, 2, and 3) 
Instead of computing being “rebooted” by some future discovery, RCS 4 raises the possibility that the 

key discoveries are being made independently and what is needed is to fuse them into a common 

approach. RCS 4 created a forum where one set of complementary approaches were discussed by their 

proponents. The defining characteristics of the approaches are illustrated in Figure 3 in a way that 

highlights their common features. Projections for the energy efficiency, density, and other benefits for 

these approaches are so much higher than the equivalent Boolean logic gate implementation that they 

may together have enough growth potential to restore an exponential improvement path like Moore’s 
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law. These new approaches rely on the continued evolution of transistors, since they are also dependent 

on transistors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Multiple usage modes for new state-containing devices 
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The common features across the examples in Figure 3 are as follows: Each uses a new state-containing 

device in addition to transistors. Furthermore, the building block common across Figure 3 is an array or 

crossbar, which contrasts to the Boolean logic gate that has been the common building block for logic. 

The original cross-device studies [Nikonov 13] and summarized by Ian Young [Young Thu 2:15] looked at 

non-transistor devices as replacements for the switches underlying Boolean logic gates, comparing the 

devices against CMOS by the energy and speed of the resulting circuit. The structures in Figure 3 are 

bigger and more complex than a single Boolean logic gate, meaning the functions are equivalent to 

hundreds, thousands, or in fact a quantity of Boolean logic gates that scales up over time. Energy 

efficiency can be much higher when a function is realized directly instead of being realized through the 

intermediate step of creating Boolean logic gates, an idea with a theoretical support [DeBenedictis 

poster]. 

The concept of state-containing devices deserves explanation: A transistor is described by equations, 

tables, or measurements that relate the voltages and currents in the leads. However, the behavior of a 

state-containing device will also be dependent on the data stored in the device. This data is called state 

and is typically the Boolean logic values TRUE and FALSE or memory bit values 0 and 1. For example, the 

current through a device could be higher when the device’s state holds a 1 than when it holds a 0. 

The contributions at RCS 4 that are described in Figure 3 are as follows: 

Advanced memories 
Dedicated memory is important due to the ubiquity of the von Neumann architecture and its division of 

computers into a processor and memory. Irrespective of new approaches, plain memory is expected to 

remain important even after computing is “rebooted.” Figure 3A illustrates the baseline memory circuit, 

which reads by driving one row with a decoded address and senses the memory contents on the 

columns. Writing involves driving one row with a decoded address and driving the data to be written on 

the columns. The International Technology Roadmap for Semiconductors (ITRS) roadmaps memory 

devices such as Flash, the memristor, phase change memory, and various magnetic devices [Marinella 

Fri 10:00]. 

Historically (i. e. not in RCS 4), the memristor (a device) was renamed to a Resistive Random Access 

Memory (RRAM or ReRAM) device for its use in advanced memories (more on this below). 

Neural Networks 
Neural networks are often conceptualized as an “arrays of synapses,” which are investigated as row-

column arrays of cells that store synapse values at the crossings as illustrated in Figure 3D [Burr 

15][Hasler 15][Marinella Fri 10:00b][Mountain 15][Mountain Thu 3:45] [Franzon poster][Vineyard 

poster]. All the synapses in an array can learn by driving the rows and columns appropriately, an 

operation expressed mathematically as a rank-1 matrix update where the state-containing devices 

comprise the matrix elements. To make a neural net perform (a neural network is said to be performing 

when it processes information without learning), the rows are driven with stimuli and results are read 

from the columns. Performance is mathematically equivalent to vector-matrix multiply. The devices at 

the cross points have changed over the years, becoming smaller, more precise, and more energy 

efficient. Memristors/RRAM and phase change memory have been used quite effectively for 

neuromorphic computing research. The brain-inspired approach for creating better computers in 

[Kumar poster] is shared with the references earlier in this paragraph, but the execution platform is 

different. 
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It is ironic but consistent with the point of this summary that the act of renaming “memristors” to 

“RRAM” associated the device with a specific application, which was promptly reversed by the use of the 

memristors in neural networks. 

Matrix Algebra Engines 
RCS 4 included a presentation on the “Dot Product Engine,” [Strachan Fri 10:30], a memristor crossbar 

that performs vector-matrix multiplication at very high speed. The circuit in Figure 3B is the same as 

neuromorphic crossbars, but the usage has been generalized to be a component in non-neuromorphic 

systems, such as signal processors. 

Vector-matrix multiplication sometimes works quite nicely in reverse. The roles of rows and columns can 

be trivially interchanged if the devices at the row-column intersections have two terminals (as shown 

throughout Figure 3 – although there are important devices that have three terminals and require a 

double layer of rows or columns). Such a change would require more complex row and column 

electronics, but the stored data would not change. This has the mathematical effect of transposing the 

matrix, for example leading to Figure 3B computing y = xA while Figure 3C computes y = xAT. 

The writing of a memory illustrated in Figure 3D is a special case of what is known in vector algebra as a 

“rank 1 update” and is essentially the delta learning rule [Widrow 60] in neuromorphic systems. A rank-1 

update is defined as A = A + yxT, where A is a matrix, and vectors x and y are multiplied in an outer 

product (yielding a matrix). The delta rule is used in backpropagation in neural system where the outer 

product of the neural stimulation and the error is used to adjust synapses. In a memory, one of the 

vectors is the decoded address and the other is the data to be written. 

The discussion above has reversed the simulation relationship between neural networks and some uses 

of supercomputers. Neural networks have been simulated on supercomputers for many years using 

matrix algebra subroutine packages. In a role reversal, this section showed how technology derived from 

neural networks could simulate the linear algebra subroutines that run on conventional computers. 

While not described at RCS 4, some of the attendees wrote a paper [Agarwal 15] analyzing the energy 

efficiency of a sparse coding algorithm on a crossbar like the ones in Figure 3. This analysis of an 

exemplary matrix algebra algorithm showed an energy efficiency improvement over an equivalent 

CMOS implementation. 

Precision 
Computation based on the approaches above would have precision limits, but RCS 4 also included a 

paper [Khasanvis 15][Khasanvis Thu 8:45] and attendees who have made research contributions 

[Nikonov 13] that address precision limits. The array structure common across Figure 3 has single, 

independent device at each intersection. While the devices may hold analog values, analog computing 

becomes increasingly difficult as precision increases. However, Santosh Khasanvis presented a talk on an 

architecture that uses multiple magnetoelectric devices to represent a single value at increased 

precision. Santosh’s structure was different from an array. Magnetoelectric devices are also one of the 

advanced memory devices covered by ITRS [Marinella Fri 10:00], studied as a logic device [Nikonov 13], 

and analyzed theoretically [DeBenedictis poster]. There was not enough material at RCS 4 (or in the 

literature, for that matter) to more fully analyze high precision computation using emerging devices. 
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General Logic 
RCS 4 also included a paper on an Ohmic Weave [Mountain 15], which is essentially a hybrid computer 

architecture of Boolean logic and artificial neural networks. Ohmic Weave can embed a Boolean logic 

diagram into a neural network as shown in Figure 3F, using the new memory devices in part to specify 

logical function and in part to specify how the logical functions are wired together. Ohmic Weave could 

lead to a future computing system that is manufactured with unallocated resources that would later 

become either the current style of digital logic, neurons in an artificial neural network, or perhaps the 

current style of digital logic based on the circuit learning its function instead of being designed or 

programmed by a human. 

Many types of artificial neurons are a generalization of logic gates, thus forming the technical basis of 

this approach. More specifically, setting neural synaptic weights in a specific ways allows a neuron to 

perform a Boolean logic function such as the NAND shown in Figure 3F. Artificial neurons are more 

general than Boolean logic gates in the sense that the synaptic weights are learned or trained, making a 

group of artificial neurons roughly equivalent to the combination of Boolean logic gates plus the 

interconnect wire. A Field Programmable Gate Array (FPGA) is similar. 

However, Ohmic Weave has a learning capability beyond what is possible in Boolean logic networks or 

FPGAs. Some of the synapses would become strong connections through learning that become the thick 

wires illustrated in Figure 3F and which control the circuit. However, a neural network contains more 

information than just what has been learned. Neural networks also contain information observed in the 

environment or during training that has not been consistent enough to actually create new behavior, 

but which may speed the learning of new behaviors later. Figure 3F shows this additional in formation as 

wires that are too thin or weak to control the circuit, but which may influence the circuit learning new 

behavior later. This shows how Ohmic Weave may replace both a logic circuit and some of the activities 

of the logic design engineer. 

As mentioned above, the structures in Figure 3 can have energy efficiency benefits over implementation 

of equivalent functions using Boolean logic gates. Thus, the Ohmic Weave is in part a demonstration of 

how lessons learned from the study of brains could be used to make more energy efficient computers. 

The demonstration in the RCS 4 paper was an AES encryptor implemented with neurons performing 

complex Boolean logic functions, and a malware detector implemented as a neural network. 

Sensible Machine and Grand Challenge 
The collection of ideas in Figure 3 could create a new approach to computing when viewed all at once, 

which is very nearly the definition of the OSTP Nano-Inspired Grand Challenge for Future Computing 

announced October 20, 2015. This Grand Challenge followed a Request for Information (RFI) from OSTP 

in June 2015 that Stan Williams and about 100 other people responded to. Stan’s response titled the 

“Sensible Machine” was the technical idea or template for this Grand Challenge. Lloyd Whitman of OSTP 

was the lead on defining the Grand Challenge, and gave a talk on it [Whitman Thu 5:00]. Stan Williams 

also gave a talk on his idea [Williams Thu 3:45]. 

Given the importance of Federal Government sponsorship, the RCS 4 organizers made last-minute 

adjustments to the agenda after the Grand Challenge announcement. Synergy between the Grand 

Challenge, the organization of RCS 4, and this document should be seen as deliberate. 
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The definition of the Grand Challenge in [Whitman Thu 5:00] and elsewhere, “[C]reate a new type of 

computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has 

learned, and operate with the energy efficiency of the human brain,” and clarifying text [Whitehouse 15] 

seems to fit quite well with the exposition presented above. The objective is to make a new type of 

computer with new capabilities to learn from massive amounts of data and solve problems. The direct 

connection to the human brain is through energy efficiency, but indirectly the expectation is that 

neuroscience and neuromorphic computing could be used as inspiration for the development of new 

computational techniques. 

Superconducting Technologies 
In a fourth track, Marc Manheimer, program manager for the IARPA Cryogenic Computing Complexity 

(C3) program, provided an overview of a computing approach based on SuperConducting Electronics 

(SCE) [Manheimer Thu 10:15][Manheimer poster] and based on [Holmes 15][Kadin poster]. While C3 is 

based on completely new technology at the low level, it parallels research directions in the larger 

industry quite well. SCE is a computing approach where the electronics are cooled to nearly absolute 

zero, causing the wires to become superconductors where they lose all resistance. Two-terminal 

Josephson Junctions (JJs) are used in lieu of transistors in Boolean logic circuits. The C3 program includes 

research on both JJ-based logic circuits and cryogenic versions of some of the state-containing memory 

devices in Figure 3. 

Computer logic based on SCE has been a possibility for decades, yet shifts in the way transistors are 

likely to scale may be providing an opportunity for this approach to move into production. If the 

computer industry accepts segmentation of technology as suggested above, SCE could become an 

option for large computer installations such as supercomputers and server farms. The limitation to large 

installations is due to economies of scale for cooling. 

The plot in Figure 4 [Frank 14] shows a basis for segmenting logic technology. The energy versus speed 

plot shows many crossing curves for transistorized options, yet all fall behind the Pareto frontier added 

by the current authors as a heavy red line. Energy can be traded off for speed in transistorized Boolean 

logic circuits, but all such circuits are limited by certain features common to transistors. 

Superconducting electronic circuits based on Single Flux Quantum (SFQ) signaling are not subject to the 

energy-speed tradeoff, creating an opportunity for extremely high speed circuits annotated on the right 

of Figure 4. Other circuits made of JJs and superconducting wires can implement Boolean logic functions 

with ultra high energy efficiency, leading to the opportunity annotated at the bottom of Figure 4. 

A limitation on the minimum size of superconducting electronics has been a criticism in the past, yet 

shifting electronics to 3D may make this criticism moot. Superconducting electronics needs feature sizes 

greater than about 100 nm in order for the quasi-particles that carry information to have space to move 

freely. This 100 nm “coherence length” is an order of magnitude larger than the projected minimum 

feature size for transistors of 10 nm or thereabouts. However, shifting electronics to 3D would make the 

feature size limitation of superconducting electronics much less of a problem while making ultra high 

energy efficiency much more of an advantage. 
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Figure 4: Superconducting technology in context [Frank 14] 

 

National Scale Programs 
RCS 4 included brief presentations by program managers and other leaders across multiple funding 

agencies, including NSCI [Koella Thu 11:15] OSTP [Whitman Thu 5:00] DARPA [Hammerstrom Thu 5:15] 

and IARPA [Matheny 5:30]. In addition, several non-government organizations supporting computing-

related research gave overviews of their activities ITRS 2.0 [Gargini Thu 10:45] SRC [Joyner Thu 11:00] 

and IEEE [Conte Thu 8:30]. 
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Conclusions and Looking Ahead 

The Future of Computing 
The ideas above start to define a path forward. Transistor-like devices used as switches in Boolean Logic 

and von Neumann computers will continue to improve for a decade, allowing continuation of “Moore’s 

Law” in that timeframe. At the same time, new systems will develop based on arrays of new types of 

state-logic devices arranged into arrays that will process stored data very efficiently, including learning 

from data. These new systems will boost the performance of computers and supercomputers – but not 

in the traditional direction. Computer applications that rely on fast single processors with low or modest 

memory requirements may be reaching a performance plateau. However, the end-state of that plateau 

may include unfamiliar technologies such as probabilistic and superconducting technologies. However, 

applications for servers and supercomputers that currently rely on big data may grow with a 

reinvigorated Moore’s Law. Applications that learn may emerge for the first time with an exponential 

growth path. A key software factor will be the ability to capture the behavior of today’s computer 

programmers, operators, and data analysts and teach the behaviors to new learning computers. 

RCS Publications, Roadmaps, and Future Conferences 
One of the goals of the RC Committee and the participants is to publish a White Paper or article 

summarizing the conclusions of the RCS series of Summits. The venue of such a report might be in a 

journal such as IEEE Computer, or alternatively in a new journal such as the IEEE Journal of Exploratory 

Solid-State Computational Devices and Circuits. In addition, these summits could lead to the 

establishment of an annual international conference on Rebooting Computing, which will bring together 

engineers and computer scientists from a wide variety of disciplines, to help promote a new vision of 

Future Computing. Finally, there is interest in developing industry-wide roadmaps and standards that 

can guide future development of computer systems in the same way that ITRS guided device 

development during the Moore’s Law era. 
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Appendices 

Appendix A:  Agenda for Rebooting Computing Summit 4 (RCS4) 
9-11 December, 2015 – Washington Hilton, Washington, DC 

Note: Matt Marinella actually gave a talk memory in track 2 (and attended track 3 as well). 

Duration

3:00 6:00 PM

9:00 PM

0:15 8:30 AM

1:15 8:45 AM

0:15 10:00 AM

0:30 10:15 AM

0:15 10:45 AM

0:15 11:00 AM

0:15 11:15 AM

1:00 11:30 AM

1:15 12:30 PM

0:30 1:45 PM

0:30 2:15 PM

0:30 2:45 PM

0:30 3:15 PM

1:15 3:45 PM

0:15 5:00 PM

0:15 5:15 PM

0:15 5:30 PM

0:30 5:45 PM

0:45 6:15 PM

2:00 7:00 PM

9:00 PM

0:30 8:30 AM

1:00 9:00 AM Track 2: Moore's law Track 3, continued

0:30 10:00 AM E3S Eli Yablonovitch Neuromophic tech. Matt Marinella

0:30 10:30 AM Steep Slope Transistors S. Datta Dot Product Engine J. P. Strachan

1:00 11:00 AM

0:30 12:00 PM

0:00 12:30 PM

5:30 12:30 PM

6:00 PM Sensible Machine group meeting adjourns

Track 1: Co-facilitators: Dave 

Mountain, Laura Monroe

Track 3: Co-facilitators Erik 

DeBenedictis, Yung-Hsiang Lu

Track 2: Beyond CMOS 

Benchmarking I. Young, plus 

discussion

Wednesday, December 9, 2015

Reception

End reception

Thursday, December 10, 2015

Review of other initiatives in this area – SRC William Joyner

Break

Review of impetus for IEEE RC initiative, review of RC summits (3 pillars, complementary nature of various 

approaches, etc.). Tom Conte/Elie Track

Track 1: Probabalistic/random/approximate big picture and experimental results L. Monroe; S. Khasanvis (tent.)

Break

Track 2: 3D integration and new devices big picture and experimental results Kirk Bresniker; H. S. P. Wong

Track 1: Co-facilitators Dave 

Mountain, Laura Monroe

Review of other initiatives in this area – IARPA Jason Matheny

Extra Track: Superconductive electronics/C
3
 Marc Manheimer

Break (needed for set up by hotel) and *** GROUP PICTURE ***

Posters (in same room as reception)

Review of other initiatives in this area – NSCI William Koella

Review of other initiatives in this area – OSTP Grand Challenge Lloyd Whitman

Track 3: Neuromorphic/Sensible Machine big picture and experimental results Stan Williams; Dave Mountain

Review of other initiatives in this area – DARPA Dan Hammerstrom

Lunch (after a brief announcement of LPIRC 2016)

Review of other initiatives in this area – ITRS 2.0 Paolo Gargini

Reception starts in poster area

End reception

Friday, December 11, 2015

First working group review

Second working group review

Lunch

RCS 4 Adjourns

Associated IEEE/RC "Sensible Machine" Grand Challenge group meeting
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Appendix B:  RCS 4 Participants 
 

John Aidun   Sandia National Laboratories 
Neal Anderson  UMass Amherst 
Marti Bancroft  MBC 
Mustafa Baragoglu  Qualcomm 
Herbert Bennett  AltaTech 
Kirk Bresniker  Hewlett Packard Labs 
Geoffrey Burr  IBM Almaden 
Dan Campbell  GTRI 
Tom Conte   Georgia Tech 
Stephen Crago  USC - ISI 
Shamik Das   Mitre 
Suman Datta  Univ. of Notre Dame 
Barbara De Salvo  CEA – LETI (France) 
Erik DeBenedictis  Sandia National Laboratories 
Gary Delp   Mayo Clinic 
Carlos Diaz   TSMC 
Michael Frank  Sandia National Laboratories 
Paul Franzon  North  Carolina State Univ. 
Paolo Gargini  ITRS 
Kevin Gomez  Seagate 
Tim Grance   NIST 
Wilfried Haensch  IBM Yorktown Heights 
Jennifer Hasler  Georgia Tech 
Kenneth Heffner  Honeywell 
Bichlien Hoang  IEEE 
Thuc Hoang   NNSE - DoE 
Scott Holmes  IARPA 
Wen-Mei Hwu  Univ. of Illinois 
William Joyner  SRC 
Alan Kadin   Consultant 
Andrew Kahng  UC San Diego 
Santosh Khasanvis  BlueRISC 
David Kirk   NVIDIA 
Will Koella   NSA 
Dhireesha Kudithipudi Rochester Inst. of Technology 
Arvind Kumar  IBM 
Rakesh Kumar  Univ. of Illinois 
Hai Li   Univ. of Pittsburgh 
Ahmed Louri  George Washington Univ. 
Yung-Hsiang Lu  Purdue Univ. 
Mark Lundstrom  Purdue Univ. 
Marc Manheimer  IARPA 
Matthew Marinella  Sandia National Laboratories 
Jason Matheny  IARPA 
LeAnn Miller  Sandia National Laboratories 
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Chris Mineo   Lab. For Physical Sciences 
Laura Monroe  Los Alamos 
David Mountain  NSA 
Robert Patti   Tezzaron Semicond. 
Robert Pfahl  iNEMI 
Wolfgang Porod  Univ. of Notre Dame 
Rachel Courtland Purcell IEEE Spectrum 
Shishpal Rawat  Intel 
Chuck Richardson  iNEMI 
Curt Richter   NIST 
Heike Riel   IBM Research 
Stefan Rusu   TSMC 
David Seiler   NIST 
Gregory Snider  Notre Dame University 
Roger Sowada  Honeywell 
John Spargo  Northrop Grumman 
John Paul Strachan  Hewlett Packard Labs 
Jack Yuan-Chen Sun  TSMC 
Elie Track   IEEE Council on Superconductivity 
Wilman Tsai  TSMC 
Jeffrey Vetter  Oak Ridge National Lab 
Craig Vineyard  Sandia National Laboratories 
Lloyd Whitman  OSTP 
Stan Williams  Hewlett Packard Labs 
Philip Wong   Stanford 
Eli Yablonovitch  UC Berkeley 
Ian Young   Intel 
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Appendix C:  Group Outbrief on Probabilistic 

Summary of the approximate, probabilistic, and stochastic computing breakout 

sessions (Track 1). 

 

Breakout session attendees represented a variety of interests and experience in this subject 

David Mountain and Laura Monroe, co-facilitators 

Tom Conte 

Neal Anderson 

Jeff Vetter 

Kurt Richter 

Arvind Kumar 

Steve Crago 

Elie Track 

Chris Mineo 

Gary Delp 

Bill Harrod 

John Daly 

John Aidun 

Rakesh Kumar 

Thuc Hoang 

Roger Sowada 

 

Key takeaways from a (somewhat) structured discussion over the two days: 

 

Identifying applications to drive R&D efforts is highly effective.  Applications can be broken down into 

two major categories: 

Single applications such as streaming analytics or image recognition – these are applications for 

an end user. 

Foundational applications such as iterative solvers, BLAS (basic linear algebra solvers), etc. – 

these are libraries or components that tend to be used in a large number of applications. 

 

The driving applications may be very different for each type of computing in this track. 

 

Developing a taxonomy and language to describe these approaches to computing and their components 

is important – standards and metrics are part of this; there needs to be a way to describe and quantify 

trade-offs. 

 

Fault models are crucial for probabilistic computing.  Rates of faults, distribution of fault types, 

propagation vectors, etc. 

 

Need to think about all parts of the computing architecture – can these approaches help with data 

movement issues? 

 

Scientists that explore the natural world deal with approximations all the time.  How can we leverage 

their knowledge? 

 

Neal Anderson noted a current lack of high-level theoretical guidance on what gains are possible in 

principle through probabilistic computing, including costs and savings for specific computational 

problems and input characteristics, and suggested that such guidance would be helpful as the field 

progresses.  
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 An example of such guidance would be answers to questions like: 

 

 "Given a computational problem P, input/data statistics S (possible inputs and their probabilities), and a 

deterministic solution C (hardware and, where applicable, program/algorithm), does there exist a 

probabilistic solution at reliability R that could provide an X-fold increase in Y within a specified penalty 

Z?"  (Here Y, Z are things like energy consumption, run time, circuit complexity, etc.) 

 

The group also completed an initial road mapping exercise, based on the following assumptions: 

 

Approximate computing is ‘ready to go,’ while probabilistic computing needs a little maturation. 

Some reasonable level of investment will be made in these approaches to make progress. 

 

Year 1 milestones 

Create a community of interest, initial tasks would be: 

 Develop a framework and language for describing and evaluating ideas and accomplishments. 

 Develop kernels, benchmarks, metrics to drive explorations and evaluations. 

 Develop a modeling-simulation environment and hardware testbed based on CMOS technology.  

This is probabilistic computing centric.  Mod-sim goals for years 1, 2, 3 – Toy environment, PhD 

usable environment, ‘production’ level environment. 

 Develop an approximate BLAS library that enables precision vs. performance, energy vs. 

resilience trade-offs. 

 

Year 2 milestones 

 Develop new algorithms that leverage approximate computing approaches (such as Monte 

Carlo, machine learning, etc.) 

 Develop a production quality toolchain for implementing approximate computing routines. 

 Specify an ISA (instruction set architecture) and functional units of value for approximate 

computing 

 Develop a strong working relationship with the beyond CMOS device community to support 

longer range efforts.  This is probabilistic computing centric. 

 

Longer term milestones 

 Apply random algorithms to probabilistic hardware and show improvement in metrics of value. 

 Develop advanced hardware prototypes that implement specialized microarchitectures for 

application development and evaluation. 

 Develop an initial information theory of probabilistic and stochastic computing. 

 Build a hardware testbed for probabilistic computing that incorporates ‘beyond CMOS’ 

technology. 

 Demonstrate an approximate-computing centric system level implementation. 
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Appendix D: Group Outbrief on Beyond CMOS 
Summary by Paolo Gargini 

 Moore’s Law (i.e., doubling of transistors every 2 years) will continue for the next 5-10 

years.  

 FIN FET transistors were introduced into manufacturing in 2011; due to their vertical on-the-

side structure TFETs provide higher packing density than planar CMOS transistors.   

 The NRI was initiated in 2005 with the goal of finding the “next switch”.  

 In 2010 a selected group of possible new switches was identified.  

 TFET transistors were identified in the breakout as the most likely candidates to replace or 

work in conjunction with FIN FET beyond 2020. Multiple papers on TFET were presented at 

2015 IEDM on Dec 7-9. TFET transistors based on 2D materials developed at E3S Center 

represent a real breakthrough. 

 Memory devices are reaching fundamental 2D-space limits. 

 Leading Flash companies are introducing 3D flash memory in production in 2016 packing 32 

to 48 layers.  

 Logic devices will also convert to this 3D architecture in the next decade.  

 The next generation of scaling, succeeding Geometrical Scaling (1975-2002) and Equivalent 

Scaling (2013~2025) has been named 3D Power Scaling. 3D architecture and minimal power 

consumption are the main features of this scaling method. 

 Reduction of power consumption in logic devices will allow logic/memory 3D architecture to 

dominate the latter part of the next decade. 

 3D architecture will allow insertion of multiple logic and memory devices in the cross point 

nodes. 

 Resistive memory and carbon nanotubes are also considered viable candidates for 3D 

memory implementation.  

 Significant progress has also been accomplished in magneto-electric devices. These devices, 

often spin based, combine the mobility of electrical charges with the memory features of 

magnets. Possible co-location of logic and memory operations may be possible with these 

types of devices. 

 New materials are the key enablers of all these new devices and architectures. 

 Lack of adequate facilities capable of processing full flow device is a major limiter. 
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                  Summary Roadmap 
 

 

 

 

Appendix E: Group Outbrief on Neuromorphic Computing 
This brief section has been added for purposes of consistency. The group lead for the neuromorphic 

track was the principal author of the “technical summary of RCS 4.” Ideas for the neuromorphic group 

outbrief have been integrated into that section. 
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Appendix F: Poster Abstracts 
Abstracts for Posters Presented at the 4th IEEE Rebooting Computing Summit 

 

Revealing Fundamental Efficiency Limits for Complex Computing Structures: The FUELCOST Methodology 

Neal G. Anderson, Ilke Ercan*, and Natesh Ganesh 

University of Massachusetts Amherst 

The energy efficiency of computation doubled every ~1.57 years from the dawn of digital computation to around 

2010 (Koomey’s Law), after which progress has slowed.  Restoration of exponential efficiency scaling over the long 

term will likely be achievable only through the development of new computing technologies based on 

unconventional computing strategies and paradigms.  Given the major investment that will be required to develop 

any new computing paradigm, and the critical importance of energy efficiency, evaluation of alternative computing 

paradigms should include limiting efficiency as an integral component.   

In this poster, we describe an evolving physical-information-theoretic methodology—the FUELCOST 

methodology—that enables determination of the FUndamental Efficiency Limits of complex COmputing 

STructures.   This methodology is based on a fundamental physical description of the dynamics of information as it 

is processed by computing hardware, as opposed to a physics-based description of the dynamics of computing 

hardware as it processes information (e.g. as in standard models and simulations).  This enables isolation of 

fundamental sources of inefficiency that are deeply rooted in physical law and incurred at different levels of 

abstraction in complex computing systems.  We discuss the underlying theoretical approach; previous studies of 

various computing structures (finite-state automata, simple processor architecture), logic blocks and functions 

(ALUs, decoders, adders), and nanocircuit implementations (both transistor- and non-transistor-based); progress 

toward full synthesis, integration, and automation of the multi-level evaluation methodology; and exploratory 

application directions (digital/discrete-analog neuromorphic, approximate, and Brownian approaches). 

* Present Address: Boğaziçi University 

____________________________ 

Adapting to Thrive in a New Economy of Memory Abundance 

Kirk Bresniker and R. Stanley Williams 

Hewlett Packard Labs 

Processing technology has eclipsed memory technology for the past six decades, but processor-centric 

architectures are reaching their terminal efficiency. We can reboot computing on the basis of abundant memory 

enabled by emerging device physics, which will make computation, communication, and memory more efficient. 

This approach also provides a unique opportunity to address novel security threats with modern, systemic 

solutions.  

_____________________________ 

Improving Energy Efficiency via Nonlinear Dynamics and Chaos 

Erik P. DeBenedictis
1
, Neal G. Anderson

2
, Michael P. Frank

1
, Natesh Ganesh

2
, R. Stanley Williams

3
 

1
Sandia National Laboratories, 

2
University of Massachusetts Amherst, 

3
Hewlett Packard Labs 

The Boolean logic abstraction offers intellectual elegance and reduces design effort, but may also limit energy 

efficiency.  This poster gives one example where a new circuit based on a new MeRAM device theoretically 

improves energy efficiency by several orders of magnitude over accepted projections of Boolean logic gates.  A 
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route to improved energy efficiency was demonstrated for a simple “learning machine,” but generalization to 

other problems is beyond the scope of this poster. 

_____________________________ 

Cortical Processing 

Paul Franzon 

North Carolina State University 

Cortical Processing refers to the execution of emerging algorithms relying on probabilistic spatial and temporal 

recognition.  In this work we are building processors customized towards execution of these algorithms.  Examples 

of these algorithms include Cogent Confabulation, Hierarhical Temporal Memory, and Long Short Term Memory.  

Customization features include Processor in Memory and functional accelerators.  Improvements in 

performance/power of up to 10
5
 have been demonstrated over GPUs. 

_____________________________ 

Superconducting Computing in Large-Scale Hybrid Systems 

Alan M. Kadin
1
, D. Scott Holmes

2
, and Mark W. Johnson

3
 

1
Consultant for Hypres, Inc.; 

2
Booz Allen Hamilton; 

3
D-Wave Systems, Inc. 

The past, present, and future of superconducting computing will be discussed, based on the feature article in the 

December issue of IEEE Computer Magazine.  Specific systems addressed will include processors for digital radio 

receivers, quantum annealing, neural simulators, and ultra-low-power adiabatic computing. 

_____________________________ 

Scaling Up of Neuromorphic Computing Systems using 3D Wafer Scale Integration 

Arvind Kumar
1
,Zhe Wan

2,3
, Subramanian Iyer

3
, and Winfried Wilcke

4 

1
IBM TJ Watson Research Center, 

2
IBM Albany Nanotech, 

3
UCLA, 

4
IBM Almaden Research Center 

The cognitive era is just beginning, with hopes of computing machines that can solve "unstructured" 

computational problems, such as sensing, learning, and inferring; detecting patterns and anomalies; and predicting 

and discovering. These types of data-centric applications require a fundamental shift from the von Neumann 

architecture which has defined computing systems since the 1940s.  Inspired by the brain, we propose a radically 

different architecture consisting of a large number of highly interconnected simple processors intertwined with 

very large amounts of low-latency memory. This memory-centric architecture can be realized using 3D wafer scale 

integration, which provides massive interconnectivity through very high bandwidth directly between processors.  

Combined with mature CMOS technologies, it provides a path toward early realization of a highly scaled-up 

neuromorphic computer. The natural fault tolerance and lower power requirements of neuromorphic processing 

make 3D wafer stacking particularly attractive. 

____________________________ 

Low-Power Image Recognition Challenge (LPIRC) 

Yung-Hsiang Lu 

Purdue University 

Many mobile systems (smartphones, electronic glass, autonomous robots) can capture images. These systems use 

batteries and energy conservation is essential. This challenge aims to discover the best technology in both image 

recognition and energy conservation. Winners will be evaluated based on both high recognition accuracy and low 

power usage. Image recognition involves many tasks. This challenge focuses on object detection, a basic routine in 
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many recognition approaches. The first LPIRC was held in June 2015 and the top two winners presented their 

solutions in the International Conference on Computer Aided Design in November 2015. The second LPIRC is 

planned for June 2016 in Austin Texas. 

_____________________________ 

Cryogenic Computing Complexity (C3) Program 

Marc Manheimer 

IARPA 

The ultimate goal of the Intelligence Advanced Research Projects Activity (IARPA)'s Cryogenic Computing 

Complexity (C3) program is to demonstrate a complete superconducting computer including processing units and 

cryogenic memory. IARPA expects that the C3 program will be a five-year two-phase program. Phase one, which 

encompasses the first three years, primarily serves to develop the technologies that are required to separately 

demonstrate a small superconducting processor and memory units. Phase two, which is for the final two years, will 

integrate those new technologies into a small-scale working model of a superconducting computer. Program goals 

are presented, and the approaches of the phase-one teams are reviewed. 

_____________________________ 

Acceleration of Neural Algorithms using Nanoelectronic Resistive Memory Crossbars 

Matthew J. Marinella, Sapan Agarwal, David Hughart, Steve Plimpton, Ojas Parekh, Tu-Thach Quach , Erik 

Debenedictis, Ron Goeke, Pat Finnegan, Derek Wilke, Denis Mamaluy, Harry Hjalmarson, Brian Tierney, Dave 

Henry, Alex Hsia, Brad Aimone, and Conrad James 

Sandia National Laboratories 

The size and “depth” of deep neural algorithms are currently limited by available hardware. It is typically not 

practical to run simulations that require more than one week to run, and hence the neural field is limited to 

problems that can be run in this length of time with a modern supercomputer (typically 50k-3M CPU/GPU cores). 

Although impressive results training deep networks using modern GPU clusters have recently been reported, 

training much larger deep networks and datasets is highly desirable. Numerous groups are making progress in the 

short term toward this goal, though the development of highly efficient GPU, FPGA, and ASIC cluster architectures, 

which will likely increase the size of these networks by as much as two orders of magnitude in the short term. For 

the longer term, we are exploring the use of emerging nanoelectronic resistive memory technologies, which could 

provide as much as eight orders of magnitude improvement over implementing the same algorithm on a modern 

CPU. We will report an overview and share recent results from our effort at Sandia to create a neural algorithm 

accelerator, which includes multidisciplinary work ranging from basic materials science, device fabrication and 

characterization, through the architecting, theoretical modeling, and simulation of this accelerator.  

____________________________ 

Energy Recovery and Recycling in Computation: Reversible Adiabatic Logic 

Gregory L. Snider
1
, Ismo K. Hänninen

1
, César O. Campos-Aguillón

1
, Rene Celis-Cordova

2
, Alexei Orlov, and Craig S. 

Lent 
1
University of Notre Dame, 

2
Tecnológico de Monterrey, Mexico 

Energy use in computation has become the dominant challenge in the design of computational logic and systems.  

Here energy is dissipated to heat in two ways, by passive dissipation due to leakage, and by active dissipation 

caused by the processing of information.  As supply voltages are lowered to reduce the active dissipation, the 

passive dissipation increases, so resent research has concentrated on reducing the passive dissipation.  Even if 
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passive dissipation is eliminated, active dissipation in conventional computation will still set a lower limit on total 

dissipation, limiting future progress. 

Recent experiments testing the Landauer principle have shown that, as predicted, there is a minimum limit of 

dissipation, kBT ln(2), if information is destroyed, and that dissipation can be less than kBT ln(2), with no lower limit, 

if information is not destroyed.  Since these experiments have shown that ultra-low energy dissipation is possible, 

the question becomes how to extend these results to real computing systems.  One approach is to use reversible 

logic implemented with adiabatic circuits to avoid information destruction, so that energy can be recovered and 

loss is minimized in state transitions.  In such a system the energy needed to process information is sent to the 

logic by power clocks, and then returned from the logic when the computation is complete.  To achieve overall 

energy savings the energy returned must be recycled and reused in the next computation, rather that dissipated to 

heat in the clock generator. 

This poster presents reversible adiabatic circuits designed using adiabatic CMOS as a test bed.  As an existing 

technology, adiabatic CMOS can be used to evaluate the performance and active power dissipation of circuits.  

Simple test circuits and a simple reversible adiabatic microprocessor will be presented.  To recycle the energy used 

in computation, MEMS resonators are proposed as clock circuits.  Molecular quantum-dot cellular automata (QCA) 

is presented as a beyond-CMOS paradigm that maps well onto reversible adiabatic computational systems. 

_____________________________ 

The Dot-product engine: programming memristor crossbar arrays for efficient vector-matrix multiplication 

John Paul Strachan, Miao Hu, J. Joshua Yang, Emmanuelle Merced-Grafals, Noraica Davila, Catherine Graves, Eric 

Montgomery, R. Stanley Williams 

Hewlett Packard Labs 

Vector-matrix multiplication dominates the computation time and energy for many workloads, particularly neural 

network algorithms and linear transforms (e.g, the Discrete Fourier Transform). We developed the Dot-product 

Engine (DPE), an enhanced memory array that exploits the fundamental relationship between row voltage and 

column current, to realize an analog multiply-accumulate unit with high power efficiency and throughput. We first 

invented a conversion algorithm to map arbitrary matrix values appropriately to memristor conductances in a 

realistic crossbar array, accounting for device physics and circuit issues to reduce computational errors.  Accurate 

device resistance programming in large arrays is enabled by closed-loop pulse tuning and access transistors. To 

validate our approach, we simulated and benchmarked one of the state-of-the-art neural networks for pattern 

recognition on the DPEs. The result shows no accuracy degradation compared to software approach (99% pattern 

recognition accuracy for MNIST data set) with only 4 Bit DAC/ADC requirement, while the DPE can achieve a speed-

efficiency product of 1,000x to 10,000x compared to a comparable digital ASIC. 

_____________________________ 

Neural Computing at Sandia National Laboratories 

Craig M. Vineyard, Erik Debenedictis, James B. Aimone, Michael L. Bernard, Kristofor D. Carlson, Frances S. Chance, 

James C. Forsythe, Conrad D. James, Fred Rothganger, William M. Severa, Ann E. Speed, Stephen J. Verzi, Christina 

E. Warrender, and John S. Wagner 

Sandia National Laboratories 

An understanding of how the brain operates in performing computations has for decades served as an inspiration 

to build and design computers. Physical limits in computer hardware, advances in neuroscience, and the success of 

artificial neural network software have led to an emergence in neural inspired computing approaches. Over the 

course of a decade, leveraging neural principles for computational benefit at Sandia National Laboratories has 
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resulted in a variety of research focusing upon neural theory, modeling and simulation, and neural inspired 

application development. 

At the intersection of computability and neuroscience understanding, neural theory research strives to yield a 

formal understanding of various aspects of the brains operation for computational benefit. An analysis of the 

tradeoffs associated with computations performed and space requirements yields insights into the low power 

operating regime of brains. An information theoretic analysis of neural ensembles yields insights into 

representation and encoding paradigms. And neural ensemble research has investigated adaptive encodings. 

In addition to developing theories regarding neural computing, we have also led several modeling and simulation 

efforts. Leveraging the high performance computing expertise at Sandia National Laboratories we have developed 

and analyzed several large scale neural models, advocated uncertainty quantification and sensitivity analysis in 

neural models, and developed a language and tool for describing large-scale dynamical systems. 

And finally, the insights gained by an increased understanding of neural theory and building modeling and 

simulation capabilities has allowed us to develop a variety of neural applications. These include the development 

of neural inspired machine learning algorithms, a neural modeling approach to decision making, neural circuit 

approaches for information encoding and retrial, and the development of neural inspired computer architectures. 

_____________________________ 
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