Qualcom

Ultra-low Power Always-On Computer Vision

Ravishankar Sivalingam Sr. Staff Engineer Edwin Park Principal Enginer Evgeni Gousev Sr. Director

Qualcomm® Artificial Intelligence (AI) Research Qualcomm Technologies, Inc.

Qualcomm Artificial Intelligence Research is an initiative of Qualcomm Technologies, Inc.

Outline

- 1. Background
- 2. Use Cases
- 3. Our Approach
- 4. Product
- 5. Future

Goal

Ultra-low power always-on computer vision

- Ultra-low power for always-on: System power less than 1mA on standard lithium cell
- Low latency with typical frame rate of 1-30 fps
- Computer Vision: Insight and information from sensor

Historically

- Image sensor takes 10mW to Ws
- Image processing takes 100mW to Ws

Vision will enhance many use cases across numerous verticals

Smartphone

- Face-based auto-wake and auto-sleep
- Always-on trigger for other use cases
- Always-on trigger for iris authentication (removes multiple steps and user initiation)

Smart watch

- Face-based auto-wake and auto-sleep
- Always-on gestures

Tablets

- Simple gaze tracking for advertising attribution
- Improved landscape/portrait screen orientation

Virtual reality

- Low power gaze tracking (foveated rendering)
- Low power visual odometry for 6 DoF

'Intelligent' occupancy trigger

- Distinguish humans from other objects
- Add data layer to trigger: How many? Where?
- Trigger on particular events or objects

'Intelligent' interactivity trigger

- Face detection as a trigger for interactivity
- Smart appliance can react when a user approaches to engage it

Standalone intelligent data sensor

- Heat maps of how a space is occupied
- Privacy advantages data only, no images captured

Our always-on vision research and innovation

Integrated vision sensor & processor, independent of main processor

Supports various human detection cases

Half body

3/4 body

Change Detection

Support visual detection across a broad set of use cases

Simple Gesture (e.g. Left-Right-Left)

2-D Marker Or Logo, 3D Rigid Body (Toys)

Analytic use case: (1) Shelf Status (2) Customer Engagement

Successful detection in challenging light scenarios

- Detection scenario at distance and low light is challenging
- Model and algorithm must be resilient to these scenarios
- Sensor also sensitive to 850 nm
 IR

Face at low light (0.1 lux)

Face detection low light indoor at 768us

What needs to be done for Always-on Computer Vision

Traditional Approach

Our Approach

Image itself is secondary to information Image quality paramount Monochrome works in most cases. \leq 8-bit sufficient Color & wide bit-depth preferred Focus, autofocus, Bokeh important Focus can be good enough in most cases Adequate pixel count for applicable distance Higher pixel count Sensor & algorithm/model often split System power optimized including sensor Images shot in challenging lighting Camera & subject posed for best image Inference is heavily weighted Balance between training & inference time Algorithms redesigned with memory & power in mind Built upon available technologies Typical metric is frame-based Metrics may be event-based

Count your pennies, every savings in power adds up

Our System Approach for Always-on Computer Vision

- Favor algorithms with adaptive compute
 - Only perform computer vision when image/area has changed
 - Run light weight algorithms first
 - Favor algorithms/models with content adaptive capabilities
 - Stop when there is enough information: many application only needs to know the presence of 1 object vs. all objects
- Simplify
 - Often easier to run models at different scales than resizing images
 - Optimize brightness to favor detection
- Optimize the entire system end-to-end
 - \circ Use low power sensor
 - Optimize IO
 - \circ Move algorithms to HW when possible
 - Keep memory close to compute engine

Product: Qualcomm[®] QCC112 Chipset

Available commercial product

- Supports many uses at ~1mW, including chip, sensor, and power management
- Features:
 - Ultra-low-power MCU
 - Streaming Array Processor (SuP)
 - Programmable
 - Can be power collapsed
 - Data bursted with DMA into TCM
 - Embedded PMU
 - Vision Accelerator
 - Custom memory
 - 2X lower dynamic power and 3X lower retention power vs. standard memory cell

Training Tool: AOCVS (Always-on Computer Vision System) Portal

Visualization of Results

Show Red	cent Jobs	25	٣					
Select all	Deselect all De	lete Jobs	Stop Jobs		9	Search:		
RunID. **	Date	Status	Algo **	Model(s)	Input Type	Config **	Results	Edit
14	2019-09-16 12:50:29.057	Completed	OD	circle_10_13_16_model.bin	File with list of images	Config	Results	Edit
13	2019-09-16 12:49:16.328	Completed	OD	circle_10_13_16_model.bin	File with list of images	Config	Results	Edit
12	2019-09-05 10:29:54.975	Completed	OD	fullbody_model.bin	List of images	Config	Results	Edit
n	2019-09-05 10:29:21.068	Completed	OD	fullbody_model.bin	List of images	Config	Results	Edit
10	2019-09-05 10:28:41.532	Completed	OD	face_model.bin	List of images	Config	Results	Edit
9	2019-09-05 10:27:50.489	Completed	OD	face_model.bin	List of images	Config	Results	Edit
8	2019-09-05 10:20:05.618	Completed	OD	face_model.bin	Video file	Config	Results	Edit
7	2019-09-05 08:55:10.470	Completed	OD	circle_pattern_10_13_16.bin	File with list of images	Config	Results	Edit
6	2019-09-05 08:54:35.959	Completed	OD	circle_pattern_10_13_16.bin	File with list of images	Config	Results	Edit
5	2019-09-05 08:53:05.583	Stopped	OD	circle_pattern_10_13_16.bin	File with list of images	Config	Results	Edit
Showing 1 to	10 of 14 entries 1 row se	lected				Prev	ious 1 2	2 Next

Visualization of Key Performance Metric and Compute Tradeoffs

Previous

Show Re	cent Jobs	25	¥							Run IC) :5 (
Select al	Deselect all	Delete Record	ds Stop Jobs			Search:				0.98	
tuniD. 👯	Date	** Stat	us 🐄 Model	44	GT File 🎌	MaxFPPI	** Config	44		0.97	
6	2019-09-16 12:28:12.552	2 Completed	circle_10_13_16_model.bin	tuning_data.txt	0.05	Config	Results	Edit	Rate	0.95	
5	2019-09-05 10:23:51.799	Completed	circle_pattern_10_13_16.bin	tuning_data.txt	0.05	Config	Results	Edit	ositive	0.94	E
4	2019-09-05 06:50:12.091	Completed	circle_pattern_10_13_16.bin	tuning_data.txt	0.05	Config	Results	Edit	True P	0.92-	1
3	2019-09-05 06:49:21.500	Completed	circle_pattern_10_13_16.bin	tuning_data.txt	0.05	Config	Results	Edit		0.91- 0.90-	
2	2019-09-05 06:46:30.806	Stopped	circle_pattern_10_13_16.bin	tuning_data.txt	0.01	Config	Results	Edit		0.89	0
1	2019-09-05 06:33:44.624	Completed	circle_16_20_25.bin	tuning_data.txt	0.01	Config	Results	Edit			
										Row	uned / Strid

	Tuned Parameter	Optimized Value	Tuner Result	Computed Values
	Row Strides	3,3,1,1	True Positive Rate	0.9662
	Column Strides	4,3,2,2	False Positive Per Image	0.0439
	Merge Rect Threshold	3	Precision	0.9913
	Dist Rect Threshold	5	F1 Score	0.9786
	Min Object Size	1	Compute Complexity	22044
	Max Object Size	160	Tuner Run Time	62 seconds.
	Num Stages	8		
Next	Evaluate Model	0	bject Detect	•

Showing 1 to 6 of 6 entries 1 row selected

14

>100 FPS Face Detection Come by after talk and see the demo!!

Resources

- <u>https://www.qualcomm.com/invention/artificial-intelligence</u>
- Contact us at <u>CVM@qti.qualcomm.com</u> for developing new use cases and hardware evaluation for your products

Qualcom

Thank you!

Follow us on: **f** 🎔 in

For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2019 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.