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MOTIVATION

Design neural network which performs object detection 
on embedded platforms

with following objectives

• Bringing deep learning applications to edge platforms

• Devices  constrained by  computation speed and memory bandwidth

• Energy efficiency required to function in battery operated devices

• For applications like drone surveillance systems, self driving cars etc

High Accuracy High FPS Low Latency Less Power
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Low Power Embedded Platforms : Challenges

Parameter NVIDIA 1080Ti TI TDA2PX EVE Factor

Clock Frequency 1.50 GHz 0.90 GHz 1.6

FLOPs 11.3 TFLOPs 0.03 TFLOPs 376

Memory Bandwidth 27.30 Tbps 0.38 Tbps 72

# Cores 3500 2 1750

Power 250 W < 10 W 25

Comparison of NVIDIA 1080Ti GPU vs TI TDA2PX EVE Processor

 Constrained by both computation and memory

 Not enough parallelism because of lesser cores

 Some network layers not supported in embedded platforms

Key Design Challenges:

FLOPs – Floating Point Operations/second



HARMAN International.  Confidential.  Copyright 2019. 6

1. Objectives 

2. Network Design Challenges On Embedded Platforms

3. Object Detection :  An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion



Object Detection : Introduction

Object detection consists of two sub tasks:

• Predict the bounding box coordinates for objects present in the image (Regression)

• Identify the class of the object present in bounding box predicted (Classification) 

Object Detection network consists of two parts:

• Detection Architecture                    

• Backbone Feature Extractor

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf


Detection Architecture

• Region proposal network predicts possible object regions in image

• Object classification performed on feature map after ROI pooling

• ROI pooling converts varying object feature map to fixed size

• Examples: Faster RCNN, R-FCN

Two Stage Object Detection Architecture

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9


Detection Architecture

• Directly predicts bounding box coordinates and class confidence scores 

• Typically faster than two stage object detection architectures in GPUs

• Examples: SSD, YOLO

Single Stage Object Detection Architecture

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf


Backbone Feature Extractors
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Computationally intensive, hence not suited for real time embedded applications

Conv 3x3

Conv 3x3

Maxpool 2x2

VGG Feature Extractor

VGG Block
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Dense convolutions : Problems

Dense Convolution Group Convolution Depthwise Convolution

input
channels

input
channels

input
channels

output
channels

output
channels

output
channels

Reducing Computations

• Use alternatives like group or depthwise convolutions instead of dense convolution

• Squeeze the channels before dense convolution using 1x1 filters (pointwise convolution) 
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Real Time Object Detection Networks 

MobileNetv2MobileNetv1 ShuffleNet SqueezeNet



Performance on embedded platform

 Lower MMACs doesn’t imply faster inference speeds

 Sparse convolutions help achieve around 2x speedup 

Network topology Image Size MMACs Latency

MobileNetv1 224x224 567.70 559.18ms

SqueezeNetv1 227x227 390.80 237.60ms

JacintoNet11 v2 (D) 224x224 405.81 203.23ms

JacintoNet11 v2 (S) 224x224 107.54 103.23ms

Benchmarking data by TI of various backbone architectures on a single EVE core at 635MHz for 

TDA2PXSoC. (D) represents dense model and (S) represents sparse model

Key Observations:

* Jacintonet11 is a feature extractor developed by TI for faster inference on this platform
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Process Execution Pipeline

Let Tmem be the total time required for 

memory operations:

Tmem = Tread + Twrite

Time taken to complete the process :

Tproc = Tmem + Top

Inefficient resource utilization 

Memory 
Read

Compute
Memory 

Write

Memory 
Read

Compute
Memory 

Write

Single Thread Process Execution Multi Thread Process Execution

Fetch memory for next cycle, while 

compute for current cycle is executing

(Instruction pipelining)

Effective throughput of the process :

1/max (Top, Tmem)

Top =
#ops
BWmath

Tmem =
#bytes
BWm em

BWmath – Processor Bandwidth (FLOPs) BWmem – Memory Bandwidth (Gbps)

Memory 
Read

Compute
Memory 

Write

Tread Top Twrite

Memory 
Read



Math Limited vs Memory Limited Operation

Math Limited Operation Memory Limited Operation

For an operation to be math limited:

Top > Tmem or    
#ops
#bytes

> 
BWmath

BWmem

More computations performed for each byte 

accessed

Examples: Dense convolutions, Fully 

connected layer

For an operation to be memory limited:

Tmem > Top or    
#ops
#bytes

< 
BWmath

BWmem

Few computations performed for each byte 

accessed

Examples: Depthwise convolution, Pooling, 

Element wise operation layers

 Speed of an algorithm is determined by both computation and memory bandwidth of the hardware



Energy Efficiency & Latency

SRAM DRAM

• On-chip cache
• Expensive and faster

• Limited storage capacity

• Consume less power

• Off-chip main memory
• Cheaper, but slower
• Higher storage capacity
• Consumes more power

Occurs when data not found in SRAM and needs to access DRAM

Associated Problems with DRAM access

• Increased power consumption

• Higher latency

Network Design – key contributors

• Large intermediate feature/activation maps

• Layers with large number of weights/parameters

Cache Switching 



Network Design Strategy

1. Understand the hardware to find optimal layers for maximizing speed.

• Group / pointwise / depthwise convolutions

• Math limited vs memory limited

2. Striking a balance between spatial resolution and channel depth 

• Smaller feature maps 

• Optimal filter sizes

3. Make use of the hardware optimizations present in the platform

• SIMD support 

• Quantization

4. Explore different model compression techniques

• Sparsification

• Network pruning

Design Strategy
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TDA2PX Platform

Model Training

•Offline float-32 bit 
training on Tensorflow
or Caffe framework

Model Translation

•Converting to a fixed 
point (supports 4-bit to 
12-bit) model 
supported by TIDL 
library

Model Inference

•Running the quantized 
network model on the 
TDA2PX SoC

Development Flow

Two EVE Processors

Two A15 ARM Processors

Dual Cortex M4 Processors

Two DSP Processors

Developed by Texas Instruments For ADAS Applications



Design Strategy For TDA2PX

(I) Finding the optimal layers

Architecture Limitations

MobileNets Depthwise convolutions are memory limited 

Deeper networks leading to high latency

SqueezeNets Squeeze -> Expansion (1x1 & 3x3 filters) -> Concat

Deeper and memory intensive network 

ShuffleNets Shuffle operations are memory intensive

Shuffle operations not supported by TIDL library

Solution • Use group convolutions to reduce computations

• Use pointwise convolutions to aggregate channel 

information instead of channel shuffle



Design Strategy For TDA2PX

Layer
Type

Kernel
Size

# O/p
Channel

Stride Groups MMAC

Conv,ReLU 5 8 2 1 78.64

Conv,ReLU 3 32 2 1 75.50

MaxPool 2 32 2

Conv,ReLU 3 32 1 2 37.75

Conv,ReLU 3 64 1 4 37.75

MaxPool 2 64 2

Conv,ReLU 3 64 1 2 37.75

Conv,ReLU 3 64 1 2 37.75

Conv,ReLU 3 128 1 2 75.50

Conv,ReLU 3 128 1 2 75.50

Conv,ReLU 1 256 1 1 67.11

Conv,ReLU 3 128 3 8 75.50

• Major computational complexity lies at 

initial part of network

• Large feature maps leads to frequent 

cache switching

Solution:

 Balance the computation throughout 

the network

 Reduce channels in the initial layers 

of the network

 Gradually increase channels after 

downsampling

(II) Striking balance between spatial width 
and channel dimension



Design Strategy For TDA2PX

(III) Possible hardware Optimizations: 
Quantization

(IV) Network Compression Techniques: 
Sparsification

Proposed Detection Architecture

• Reduces redundant filter coefficients to zero
• 3 stage training procedure :

i. With l2 regularization      
ii. With l1 regularization      
iii. Thresholding and retraining

• Improves inference speed

• Converts: 32-bit floating point -> 8-bit fixed point 
• Reduces energy consumption
• Improves inference speed
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Results

 Comparison while running on 2 EVEs and single C66x DSP core

Model FPS Latency GMACs mAP

MobileNetv1-0.5 6.90 0.70s 2.20 60

JDetNet (S) 9.19 0.50s 4.49* 63

HX-LPNet (S) 22.47 0.20s 0.74* 53

Training Stage mAP FPS Latency

Initial with l2 reg 53.79 16.79 0.28s

Effect of l1 reg 54.00 16.90 0.28s

Effect of sparsity (53.55%) 52.51 22.47 0.20s

 Effect of l1 regularization, sparsification, on model mAPs

Evaluation on BDD100k Dataset for 3 classes on 1024x512 images

* Specified GMACs are for dense models 



Summary

• Following strategy can be used to design optimal networks on a target hardware:

• Proposed model HX-LPNet performs object detection on TDA2PX with :

• High FPS Low Latency   Low Power

Future Work:

• Explore how this design strategy extends to other embedded platforms

• Neural Architecture Search (NASNets) with hardware in loop 

❶ Understand the hardware, and find the optimal layers/operations 

❷Maintain a balance between spatial resolution and channel depth 

❸Make use of the hardware optimizations present in the platform

❹ Explore different model compression strategies
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