
HARMAN International. Confidential. Copyright 2019.

REAL TIME OBJECT DETECTION ON LOW POWER

EMBEDDED PLATFORMS
GEORGE JOSE, HARMANX INDIA

28 OCT, 2019

HARMAN International. Confidential. Copyright 2019. 2

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

MOTIVATION

Design neural network which performs object detection
on embedded platforms

with following objectives

• Bringing deep learning applications to edge platforms

• Devices constrained by computation speed and memory bandwidth

• Energy efficiency required to function in battery operated devices

• For applications like drone surveillance systems, self driving cars etc

High Accuracy High FPS Low Latency Less Power

HARMAN International. Confidential. Copyright 2019. 4

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

Low Power Embedded Platforms : Challenges

Parameter NVIDIA 1080Ti TI TDA2PX EVE Factor

Clock Frequency 1.50 GHz 0.90 GHz 1.6

FLOPs 11.3 TFLOPs 0.03 TFLOPs 376

Memory Bandwidth 27.30 Tbps 0.38 Tbps 72

Cores 3500 2 1750

Power 250 W < 10 W 25

Comparison of NVIDIA 1080Ti GPU vs TI TDA2PX EVE Processor

 Constrained by both computation and memory

 Not enough parallelism because of lesser cores

 Some network layers not supported in embedded platforms

Key Design Challenges:

FLOPs – Floating Point Operations/second

HARMAN International. Confidential. Copyright 2019. 6

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

Object Detection : Introduction

Object detection consists of two sub tasks:

• Predict the bounding box coordinates for objects present in the image (Regression)

• Identify the class of the object present in bounding box predicted (Classification)

Object Detection network consists of two parts:

• Detection Architecture

• Backbone Feature Extractor

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf

Detection Architecture

• Region proposal network predicts possible object regions in image

• Object classification performed on feature map after ROI pooling

• ROI pooling converts varying object feature map to fixed size

• Examples: Faster RCNN, R-FCN

Two Stage Object Detection Architecture

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9

Detection Architecture

• Directly predicts bounding box coordinates and class confidence scores

• Typically faster than two stage object detection architectures in GPUs

• Examples: SSD, YOLO

Single Stage Object Detection Architecture

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf

Backbone Feature Extractors

C
o

n
v

3
x3

, 6
4

C
o

n
v

3
x3

, 2
5

6

C
o

n
v

3
x3

, 6
4

Po
o

l/
2

C
o

n
v

3
x3

, 1
2

8

C
o

n
v

3
x3

, 1
2

8

Po
o

l/
2

C
o

n
v

3
x3

, 2
5

6

C
o

n
v

3
x3

, 2
5

6

Po
o

l/
2

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

3
x3

, 5
1

2

Po
o

l/
2

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

3
x3

, 5
1

2

Po
o

l/
2

Computationally intensive, hence not suited for real time embedded applications

Conv 3x3

Conv 3x3

Maxpool 2x2

VGG Feature Extractor

VGG Block

Maxpool 3x3

Conv 5x5Conv 3x3

Conv 1x1

Conv 1x1

Conv 1x1Conv 1x1

Concat

Inception Block

Conv 3x3

Conv 3x3

ResNet Block

Im
ag

e

Fe
at

u
re

s

Dense convolutions : Problems

Dense Convolution Group Convolution Depthwise Convolution

input
channels

input
channels

input
channels

output
channels

output
channels

output
channels

Reducing Computations

• Use alternatives like group or depthwise convolutions instead of dense convolution

• Squeeze the channels before dense convolution using 1x1 filters (pointwise convolution)

HARMAN International. Confidential. Copyright 2019. 12

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

Real Time Object Detection Networks

MobileNetv2MobileNetv1 ShuffleNet SqueezeNet

Performance on embedded platform

 Lower MMACs doesn’t imply faster inference speeds

 Sparse convolutions help achieve around 2x speedup

Network topology Image Size MMACs Latency

MobileNetv1 224x224 567.70 559.18ms

SqueezeNetv1 227x227 390.80 237.60ms

JacintoNet11 v2 (D) 224x224 405.81 203.23ms

JacintoNet11 v2 (S) 224x224 107.54 103.23ms

Benchmarking data by TI of various backbone architectures on a single EVE core at 635MHz for

TDA2PXSoC. (D) represents dense model and (S) represents sparse model

Key Observations:

* Jacintonet11 is a feature extractor developed by TI for faster inference on this platform

HARMAN International. Confidential. Copyright 2019. 15

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

Process Execution Pipeline

Let Tmem be the total time required for

memory operations:

Tmem = Tread + Twrite

Time taken to complete the process :

Tproc = Tmem + Top

Inefficient resource utilization

Memory
Read

Compute
Memory

Write

Memory
Read

Compute
Memory

Write

Single Thread Process Execution Multi Thread Process Execution

Fetch memory for next cycle, while

compute for current cycle is executing

(Instruction pipelining)

Effective throughput of the process :

1/max (Top, Tmem)

Top =
#ops
BWmath

Tmem =
#bytes
BWm em

BWmath – Processor Bandwidth (FLOPs) BWmem – Memory Bandwidth (Gbps)

Memory
Read

Compute
Memory

Write

Tread Top Twrite

Memory
Read

Math Limited vs Memory Limited Operation

Math Limited Operation Memory Limited Operation

For an operation to be math limited:

Top > Tmem or
#ops
#bytes

>
BWmath

BWmem

More computations performed for each byte

accessed

Examples: Dense convolutions, Fully

connected layer

For an operation to be memory limited:

Tmem > Top or
#ops
#bytes

<
BWmath

BWmem

Few computations performed for each byte

accessed

Examples: Depthwise convolution, Pooling,

Element wise operation layers

 Speed of an algorithm is determined by both computation and memory bandwidth of the hardware

Energy Efficiency & Latency

SRAM DRAM

• On-chip cache
• Expensive and faster

• Limited storage capacity

• Consume less power

• Off-chip main memory
• Cheaper, but slower
• Higher storage capacity
• Consumes more power

Occurs when data not found in SRAM and needs to access DRAM

Associated Problems with DRAM access

• Increased power consumption

• Higher latency

Network Design – key contributors

• Large intermediate feature/activation maps

• Layers with large number of weights/parameters

Cache Switching

Network Design Strategy

1. Understand the hardware to find optimal layers for maximizing speed.

• Group / pointwise / depthwise convolutions

• Math limited vs memory limited

2. Striking a balance between spatial resolution and channel depth

• Smaller feature maps

• Optimal filter sizes

3. Make use of the hardware optimizations present in the platform

• SIMD support

• Quantization

4. Explore different model compression techniques

• Sparsification

• Network pruning

Design Strategy

HARMAN International. Confidential. Copyright 2019. 20

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

TDA2PX Platform

Model Training

•Offline float-32 bit
training on Tensorflow
or Caffe framework

Model Translation

•Converting to a fixed
point (supports 4-bit to
12-bit) model
supported by TIDL
library

Model Inference

•Running the quantized
network model on the
TDA2PX SoC

Development Flow

Two EVE Processors

Two A15 ARM Processors

Dual Cortex M4 Processors

Two DSP Processors

Developed by Texas Instruments For ADAS Applications

Design Strategy For TDA2PX

(I) Finding the optimal layers

Architecture Limitations

MobileNets Depthwise convolutions are memory limited

Deeper networks leading to high latency

SqueezeNets Squeeze -> Expansion (1x1 & 3x3 filters) -> Concat

Deeper and memory intensive network

ShuffleNets Shuffle operations are memory intensive

Shuffle operations not supported by TIDL library

Solution • Use group convolutions to reduce computations

• Use pointwise convolutions to aggregate channel

information instead of channel shuffle

Design Strategy For TDA2PX

Layer
Type

Kernel
Size

O/p
Channel

Stride Groups MMAC

Conv,ReLU 5 8 2 1 78.64

Conv,ReLU 3 32 2 1 75.50

MaxPool 2 32 2

Conv,ReLU 3 32 1 2 37.75

Conv,ReLU 3 64 1 4 37.75

MaxPool 2 64 2

Conv,ReLU 3 64 1 2 37.75

Conv,ReLU 3 64 1 2 37.75

Conv,ReLU 3 128 1 2 75.50

Conv,ReLU 3 128 1 2 75.50

Conv,ReLU 1 256 1 1 67.11

Conv,ReLU 3 128 3 8 75.50

• Major computational complexity lies at

initial part of network

• Large feature maps leads to frequent

cache switching

Solution:

 Balance the computation throughout

the network

 Reduce channels in the initial layers

of the network

 Gradually increase channels after

downsampling

(II) Striking balance between spatial width
and channel dimension

Design Strategy For TDA2PX

(III) Possible hardware Optimizations:
Quantization

(IV) Network Compression Techniques:
Sparsification

Proposed Detection Architecture

• Reduces redundant filter coefficients to zero
• 3 stage training procedure :

i. With l2 regularization
ii. With l1 regularization
iii. Thresholding and retraining

• Improves inference speed

• Converts: 32-bit floating point -> 8-bit fixed point
• Reduces energy consumption
• Improves inference speed

HARMAN International. Confidential. Copyright 2019. 25

1. Objectives

2. Network Design Challenges On Embedded Platforms

3. Object Detection : An Overview

4. Real Time Object Detection Neural Networks : Survey

5. Embedded Platforms : Insights

6. Proposed Network Design and Verification on TDA2PX

7. Results & Conclusion

Results

 Comparison while running on 2 EVEs and single C66x DSP core

Model FPS Latency GMACs mAP

MobileNetv1-0.5 6.90 0.70s 2.20 60

JDetNet (S) 9.19 0.50s 4.49* 63

HX-LPNet (S) 22.47 0.20s 0.74* 53

Training Stage mAP FPS Latency

Initial with l2 reg 53.79 16.79 0.28s

Effect of l1 reg 54.00 16.90 0.28s

Effect of sparsity (53.55%) 52.51 22.47 0.20s

 Effect of l1 regularization, sparsification, on model mAPs

Evaluation on BDD100k Dataset for 3 classes on 1024x512 images

* Specified GMACs are for dense models

Summary

• Following strategy can be used to design optimal networks on a target hardware:

• Proposed model HX-LPNet performs object detection on TDA2PX with :

• High FPS Low Latency Low Power

Future Work:

• Explore how this design strategy extends to other embedded platforms

• Neural Architecture Search (NASNets) with hardware in loop

❶ Understand the hardware, and find the optimal layers/operations

❷Maintain a balance between spatial resolution and channel depth

❸Make use of the hardware optimizations present in the platform

❹ Explore different model compression strategies

References

• A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,W.Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.

• F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and¡ 0.5 mb model size. arXiv:1602.07360, 2016.

• N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn architecture design.
In European Conference on Computer Vision, 2018.

• M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C.Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

• M. Mathew, K. Desappan, P. Kumar Swami, and S. Nagori. Sparse, quantized, full frame cnn for low power
embedded devices. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017.

• B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified, small, low power fully convolutional neural
networks for real-time object detection for autonomous driving. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2017.

• X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

HARMAN International. Confidential. Copyright 2019.

THANK YOU

