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From Manual Design to Automatic Design

Use Human Expertise Use Machine Learning (NAS)
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Architecture _ Architecture
Design Search
VGGNets Reinforcement Learning
Inception Models Neuro-evolution

ResNets Bayesian Optimization

DenseNets Monte Carlo Tree Search

ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19
TH= On-Device Image Classification with Proxyless Neural Architecture Search m
I III and Quantization-Aware Fine-tuning, ICCV Workshop’2019 I'IAN I.AI:



From General Design to Specialized CNN

Previous Paradigm:
One CNN for all platforms.

ResNet Sub-optimal, different in:
| » Degree of parallelism
Inception  Cache size
 Memory BW
DenseNet .
MobileNet
ShuffleNet
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From General Design to Specialized CNN

Previous Paradigm: Proxyless NAS:
One CNN for all platforms. Customize CNN for each platform.

ResNet
Inception
DenseNel Proxyless
MobileNet NAS
ShuffleNet
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Conventional NAS: Computation Expensive,
thus Proxy-Based

Architecture

Learner

Updates

Current neural architecture search (NAS) is VERY EXPENSIVE.

 NASNet: 48,000 GPU hours = 5 years on single GPU
 DARTS: 100Gb GPU memory* = 9 times of modern GPU

*if directly search on ImageNet, like us

Therefore, previous work have to utilize proxy tasks:
* CIFAR-10 -> ImageNet
» Search a block -> stack to build a full net

* Fewer epochs training -> full training
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Conventional NAS: Computation Expensive,
thus Proxy-Based

Architecture

Learner

Updates

Limitations of Proxy
« Suboptimal for the target task

 Blocks are forced to share the same structure.

« Cannot optimize for specific hardware.
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Proxyless, Save GPU Hours by 200x

/\

Architecture

Architecture

: ransfer
Learner : : - = 9 Learner

Goal: Directly learn architectures on the target task and hardware. We achieved by

wPEe

1. Reducing the cost of NAS (GPU hours and memory) to the same level of regular training.
2. Cooperating hardware feedback (e.g. latency) into the search process.
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Save GPU Hours
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) fmap in memory
(1) Update weight parameters fmap notin memory (2) Update architecture parameters

Simplify NAS to be a single training process of a over-parameterized network.
Build the cumbersome network with all candidate paths. No meta controller.
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Save GPU Memory
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9 fmap in memory
(1) Update weight parameters fmap not in memory  (2) Update architecture parameters
Binarize the architecture parameters and allow only one path of activation in memory.
We propose gradient-based and RL methods to update the architecture parameters.
Reduce the memory footprint from O(N) to O(1).
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E[Latency] = a x F(conv_3x3)+
B x F(conv_5x5)+

o x F(identity)+

¢ x F(pool_3x3)
E[latency] = Z i[latency;]

2
Loss = Losscg + Mi||w||3 + A2E[latency]

- Mobile farm infrastructure is expensive and slow.

» Optimize during search stage use Gradient.

130

Direct Search on Target Hardware:
Making Latency Differentiable
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» Use the latency estimation model as an economical alternative
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Efficiently search a model Search an efficient model

10000
1000
100

10

™ Normal Train B Conventional NAS
~$100,000 Cloud Compute Cost 180 -{Much Higher Late,ncy —> ©  Top1740
~11,000 pound CO2
N\
7 160 -
£
200x ~ ProxylessNAS: 2% Higher — , @ Top176.7
c 140 4Top1 Acc with Similar Latency Top1 74.7
) v
+ 7
\ 9 /
) /
= 120 -
) ProxylessNAS:
200 GPU hours = 1.83x Faster with

S400 Cloud Compute Cost 100 - Similar Top1 Acc

47 pound CO> P S Nanan
A/ € AmoebaNet-A
80 - a Top1 746 @ ProxylesTNAS
_ 300 400 500 600 700
Search Cost: GPU Hours (h) FLOPS (M)
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR'19
On-Device Image Classification with Proxyless Neural Architecture Search m
and Quantization-Aware Fine-tuning, ICCV Workshop'2019 I'IAN I.AI:



The History of Architectures
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(1) The history of finding efficient Mobile model
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(2) The history of finding efficient CPU model
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(3) The history of finding efficient GPU model
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Results for LPIRC

Model Setting  Accuracy Latency

MoblieNetV?2 224-0.5  63.7%(65.4%) 28ms
MobileNetV2  192-0.75 67.4%(68.7%) 36ms
MobileNetV?2 160-1.0 67.4%(68.8%) 31ms

ProxylessNAS  224-0.5  65.7%(67.0%) 31ms
ProxylessNAS  160-1.0  69.2%(70.3%)  35ms

Table 1. Results of 8-bit model using different preprocessing, the
number 1n the bracket denotes the full-precision model’s top-1 ac-

curacy on ImageNet The latency 1s directly measured on Google

Pixel 2. It takes only 200 GPU hours to find the specialized model
with ProxylessNAS 1n the table.
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Open-source

« Both search code and models are released on Github:

# https://github.com/MIT-HAN-LAB/ProxylessNAS

from proxyless nas import *
net = proxyless cpu(pretrained=True)
net = proxyless gpu(pretrained=True)

net = proxyless mobile(pretrained=True)
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Open-source

* ProxylessNAS is available on PyTorch Hub:

# https://pytorch.org/hub/pytorch_vision_proxylessnas
import torch

target platform = ’'proxyless mobile’

net = torch.hub.load(’'mit-han-lab/ProxylessNAS’',

target platform, pretrained=True)
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Thank you!
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