Automated pipeline for neural network compression

Julia Gusak¹, Maksym Kholiavchenko², Evgeny Ponomarev¹, Larisa Markeeva¹, Philip Blagoveschensky¹, Andrzej Cichocki¹, Ivan Oseledets¹

¹Skolkovo Institute of Science and Technology, Russia

²Innopolis University, Russia

Contact e-mail: y.gusak@skoltech.ru

ICCV Low-Power Computer Vision Workshop, Seoul October 28, 2019

Julia Gusak, y.gusak@skoltech.ru

Automated pipeline for NN compression ICCV Low-Power Computer Vision Workshop

D Compression via low-rank approximation: motivation

- 2 One-shot compression
- 3 Multi-stage compression
- Python package

Modern neural networks (NN)

- Contain tens of millions of parameters
- Often cannot be efficiently deployed on embedded systems and mobile devices due to their computational power and memory limitations.
- Most expensive operations in CNNs are the convolution and multiplication in the convolutional and fully connected layers.

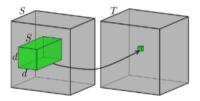
The main idea underlying the low-rank compression methods is that

- Modern CNNs are overparameterized and their weight tensors lie in a low-rank subspace.
- As a result, it is possible to compress a weight tensor by approximating it using different types of tensor decompositions, such as CP (canonical polyadic), Tucker, and other decompositions.
- This naturally reduces the number of parameters and operations in CNNs.

Motivation

For a convolutional layer with input of size $H \times W \times S$ and kernel (weight tensor) of size $d \times d \times T \times S$ number of

- parameters: $O(d^2ST)$
- operations: $O(HWd^2ST)$



Source: https://arxiv.org/pdf/1412.6553.pdf Figure: Convolutional layer.

Reducing the number of parameters in CNNs is a common trick to accelerate inference time and at the same time reduce power usage and network memory.

Julia Gusak, y.gusak@skoltech.ru

Tensor decompositions

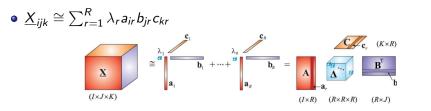


Figure: rank-R CP decomposition of 3D tensor

•
$$\underline{X}_{ijk} \cong \sum_{r_1}^{R_1} \sum_{r_2}^{R_2} \sum_{r_3}^{R_3} g_{r_1 r_2 r_3} b_{ir_1}^{(1)} b_{jr_2}^{(2)} b_{kr_3}^{(3)}$$

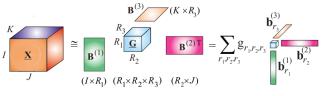
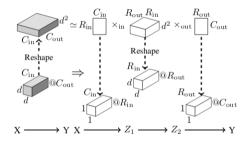


Figure: rank- (R_1, R_2, R_3) Tucker decomposition of 3D tensor

(1)

(2)

NN compression: compression step (Tucker-2 example)



- Top row: an approximation of a 3D weight tensor with a low-rank tensor, which can be represented in Tucker-2 format ($\times_{in} \times_{out}$ denote multilinear products along channel dimensions).
- Bottom row: initial layer is replaced with a sequence of 3 conv layers.
 - parameters: $O(d^2 C_{\mathrm{in}} C_{\mathrm{out}}) \rightarrow O(C_{\mathrm{in}} R_{\mathrm{in}} + d^2 R_{\mathrm{out}} R_{\mathrm{in}} + C_{\mathrm{out}} R_{\mathrm{out}})$,
 - operations:

$$O(HWd^2C_{\mathrm{in}}C_{\mathrm{out}}) \rightarrow O(HWC_{\mathrm{in}}R_{\mathrm{in}} + H'W'(d^2R_{\mathrm{out}}R_{\mathrm{in}} + C_{\mathrm{out}}R_{\mathrm{out}}))$$

Low-rank matrix and tensor approximations provide excellent compression of neural network layers in many cases (Lebedev et al. 2014, Kim et al. 2015). They are built on the same scheme:

- Compress pre-trained neural network (NN)
- Fine-tune NN

Drawbacks: compression with a significant loss of accuracy, can yield to a bad initial approximation for further fine-tuning.

Multi-stage approach with gradual rank reduction allows to tackle the problem arised in one-shot approach.

While desired compression rate is not reached or automatically selected ranks have not stabilized, **repeat**:

- Compress neural network (NN)
- Fine-tune NN

Benefits: compressed representation allows to find a good initial approximation.

 $\label{eq:algorithm1} \begin{array}{l} \mbox{Ilterative low-rank approximation algorithm for automated network compression} \end{array}$

Input: Pre-trained original model, M**Output:** Fine-tuned compressed model, M^* .

- 1: $M^* \leftarrow M$
- 2: while desired compression rate is not attained or automatically selected ranks have not stabilized **do**
- 3: $R \leftarrow$ automatically selected ranks for low-rank tensor approximations of convolutional and fully-connected weight tensors.
- 4: $M \leftarrow (\text{further})$ compressed model obtained from M by replacing layer weights with their rank-R tensor approximations.
- 5: $M^* \leftarrow \text{fine-tuned model } M$.

6: end while

Julia Gusak, y.gusak@skoltech.ru

• Bayesian approach.

- Firstly, rank *R* is found via GAS of EVBMF (Global Analytic Solution of Empirical Variational Bayesian Matrix Factorization),
- Secondly, a rank weakening is performed. Rank weakening is applied in order to maintain some redundancy in the decomposed tensor for further iterative compression.

• Constant compression rate.

 Ranks for tensor approximations can be chosen based on parameter/FLOPs reduction rate that we want to achieve at each compression step. By choosing rank in such a way, speed-up ratio of each convolutional layer can be controlled.

• Constant layer acccuracy drop.

NN compression: further compression step (Tucker-2 ex.)

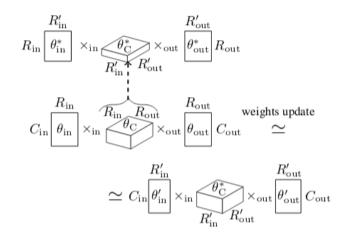


Figure: A low-rank approximation of a 3D tensor represented in Tucker-2 format

Results: one-shot vs iterative

Model	Size	CPU1	CPU2	GPU
AlexNet	4.90×	4.73×	4.55 imes	$2.11 \times$
YOLOv2	2.13 imes	$2.07 \times$	2.16 imes	1.62 imes
Tiny YOLOv2	2.30 imes	2.35 imes	$2.28 \times$	1.71 imes

Table: Results of iterative low-rank approximation. These tests were performed on CPUs of two different series and on GPU: Intel Core i5-7600K, Intel Core i7-7700K and NVIDIA GeForce GTX 1080 Ti, respectively.

Model	MUSCO	Tucker2-iter
AlexNet	-0.81	-4.2
YOLOv2	-0.19	-3.1
Tiny YOLOv2	-0.10	-2.7

Table: Quality drop after iterative compression and one-time compression. For classification networks metric is Δ Top-5 accuracy, for object detection - Δ mAP

Results: object detection (FasterRCNN with ResNet backbone)

Model	FLOPs	mAP			
FASTER R-CNN C4 with RESNET-50 @ VOC2007+2012					
Used baseline	1.0 imes	75.0			
Tucker2-iter (nx, 1.4)	1.17 imes	76.8(+1.8)			
MUSCO(nx, 1.4, 2)	1.39 imes	77.0(+2.0)			
MUSCO(nx, 1.4, 3)	1.57×	75.4(+0.4)			
Tucker2-iter (nx, 3.16)	1.49 imes	75.0(+0.0)			

Table: Comparison of Faster R-CNN (with ResNet-50 backbone) compressed models on Pascal VOC2007 dataset.

Results: image classification (ResNet on ILSVRC12)

Method	FLOPs	Δ top-1	Δ top-5		
RESNET-18 @ ILSVRC12 dataset					
Network Slimming(Liu &al.,'17)	1.39	-1.77	-1.29		
Low-cost Col. Layers(Dong &al.,'17)	1.53	-3.65	-2.3		
Channel Gating NN(Hua &al., '18)	1.61	-1.62	-1.03		
Filter Pruning(Li &al.,'17)	1.72	-3.18	-1.85		
Discraware Ch.Pr.(Zhuang &al.,'18)	1.89	-2.29	-1.38		
FBS(Gao &al.,'18)	1.98	-2.54	-1.46		
MUSCO (Ours)	2.42	-0.47	-0.30		

- Quantization
- Pruning (layer/structural/fine-grained)
- Knowledge distillation
- Architecture search

Low-rank based compression method can be combined with the above techniques.

Decomposing convolutional layer with dxd spatial kernel we obtain the following architecture units

- Tucker-2 decomposition 1×1, d×d, 1×1 convolutions (ResNet block)
- CP decomposition 1x1, depth-wise separable convolutions (MobileNet block)
- Block term decomposition ResNext block

Further research Exploit the link between tensor decompositions and modern deep learning networks to construct effective architectures for the variety of applications.

Python packages: musco-pytorch, musco-tf

Installation

pip install musco-pytorch

Quick Start

```
from torchvision.models import resnet50
from from flopco import FlopCo
from musco.pvtorch import CompressorVBMF, CompressorPR, CompressorManual
model = resnet50(pretrained = True)
model_stats = FlopCo(model, device = device)
compressor = CompressorVBMF(model,
                            model stats,
                            ft everv=5.
                            nglobal_compress_iters=2)
while not compressor.done:
    # Compress layers
   compressor.compression step()
    # Fine-tune compressed model.
compressed_model = compressor.compressed_model
```

A D N A B N A B N A B N

Conclusion

- We propose an iterative low-rank approximation algorithm to efficiently compress neural networks that outperforms non-iterative methods for the desired accuracy.
- We introduce a method for automatic tensor rank selection for tensor approximations performed at each compression step.
- We validate and demonstrate the high efficiency of our approach in a series of extensive computational experiments for object detection and classification problems.
- Preprint: https://arxiv.org/abs/1903.09973
- Source code (PyTorch/TensorFlow): https://github.com/musco-ai

Thank you for your attention!

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()