
 1

Report	for	the	NSF	Workshop	on	
Cross‐layer	Power	Optimization	
and	Management	
	

Massoud	Pedram,	David	Brooks,	and	Timothy	Pinkston,	
Editors	

July	31,	2012	

	

	

Contributors:		

Mohamed	 Allam,	 David	 Andersen,	 Murali	 Annavaram,	 Rajeev	 Balasubramonian,	 Kaustav	
Banerjee,	 Sankar	 Basu,	 Luca	 Benini,	 Christopher	 Batten,	 Keren	 Bergman,	 David	 Blaauw,	
Paul	 Bogdan,	 Pradip	 Bose,	 David	 Brooks,	 Naehyuck	 Chang,	 Pai	 Chou,	 Jason	 Cong,	 Brian	
Davidson,	 Jeffrey	 Draper,	 Eby	 G.	 Friedman,	 Rajesh	 Gupta,	 Sandeep	 Gupta,	 Sudhanva	
Gurumurthi,	Lei	He,	Payam	Heydari,	Mark	Hill,	Jon	Hiller,	Charles	J.	Holland,	Engin	Ipek,	Bill	
Joyner,	Brucek	Khailany,	Hyesoon	Kim,	Eren	Kursun,	Benjamin	C.	Lee,	Peng	Li,	Per	Ljung,	
Ahmed	 Louri,	 Radu	 Marculescu,	 Margaret	 Martonosi,	 Renu	 Mehra,	 Rami	 Melhem,	 Jose	
Moreira,	 Trevor	 Mudge,	 Onur	 Mutlu,	 Farid	 Najm,	 Vijaykrishnan	 Narayanan,	 Kunle	
Olukotun,	Michael	Orshansky,	Massoud	Pedram,	Timothy	Pinkston,	Viktor	Prasanna,	Qinru	
Qiu,	Karthick	Rajamani,	Parthasarathy	Ranganathan,	Vijay	Janapa	Reddi,	Kaushik	Roy,	Karu	
Sankaralingam,	 Sachin	 Sapatnekar,	 John	 Shen,	 Mani	 Srivastava,	 Mircea	 Stan,	 Steve	
Swanson,	Michael	B.	Taylor,	Josep	Torrellas,	Tom	Wenisch,	Lin	Zhong	

					

	

	

 2

Disclaimer

The	material	in	this	document	reflects	the	collective	views,	ideas,	opinions	and	findings	of	
the	study	participants	and	contributors	only,	and	not	those	of	any	of	the	universities,	
corporations,	or	other	institutions	with	which	they	are	affiliated.	Furthermore,	the	material	
in	this	document	does	not	reflect	the	official	views,	ideas,	opinions	and/or	findings	of	the	
National	Science	Foundation,	or	of	the	United	States	government.	

	

 3

Organization and Contributions

Organizers

Massoud	Pedram,	USC	

David	Brooks,	Harvard	

Timothy	Pinkston,	USC	

Core Working Group (Area) Leaders

Kaushik	Roy,	Purdue	

Jason	Cong,	UCLA	

Margaret	Martonosi,	Princeton	

Luca	Benini,	University	of	Bologna	

NSF Sponsors

Sankar	Basu,	NSF	CISE/CCF	

Ahmed	Louri,	NSF	CISE/CCF	

Government and Industry Liaisons

Frederica	Darema,	AFOSR	

Charles	J.	Holland,	DARPA	MTO	

Bill	Joyner	(SRC)	

Workshop Participants

For	full	list,	see	the	Appendix.	

 4

Foreword	

This	document	reflects	the	views	of	a	group	of	researchers	from	universities,	industry,	and	
research	 laboratories	on	 the	need	 for	potential	new	avenues	of	 research	 that	can	change	
how	 power	 optimization	 and	 management	 is	 addressed	 in	 critical	 computing	
infrastructure.	 The	 report	 was	 generated	 from	 an	 NSF‐sponsored	 Cross‐layer	 Power	
Optimization	and	Management	(CPOM)	workshop	on	February	10‐11,	2012.	 	The	general	
findings	 of	 the	 report	 agree	 with	 many	 from	 other	 strategic	 visioning	 studies	 and	
documents	recently	made	available	to	the	public,	including	the	NSF	Cyberinfrastructure	for	
21st	Century	Science	and	Engineering	 (CIF21)	Advanced	Computing	 Infrastructure	Vision	
and	Strategic	Plan,	the	CRA	CCC	21st	Century	Computer	Architecture	White	Paper,	and	the	
NITRD	Program	2012	Strategic	Plan.		Energy‐efficient	computing	solutions	that	cut	across	
multiple	 layers	 of	 the	 computing	 stack	 and	 infrastructure	 are	 needed	 for	 sustaining	
advancements	in	information	technology	to	address	critical	societal	challenges.	

The	 goal	 of	 this	 study	 was	 to	 identify	 approaches	 and	 means	 by	 which	 cross‐layer	
approaches	 to	 power	 optimization	 and	management	 can	 be	 investigated,	 developed	 and	
adopted	by	the	research	community	at	large.		The	report	was	put	together	by	area	leaders	
based	on	input	by	the	workshop	participants.		There	was	general	agreement	about	the	key	
challenges	 that	 surfaced	 from	 the	 study	and	 the	 significant	potential	 value	of	 cross‐layer	
optimizations	 to	 enable	 design	 and	 operation	 of	 power‐efficient	 computing	 platforms.		
Several	areas	for	targeted	funding	of	important	research	directions	have	been	identified.	

We	 are	 grateful	 to	 have	 worked	 with	 so	many	 dedicated	 people	 who	 put	 in	 many	 long	
hours	 to	 help	 the	 study	 along.	 Kaushik	 Roy,	 Jason	 Cong,	 Margaret	 Martonosi,	 and	 Luca	
Benini,	led	the	focus	area	discussions.	We	thank	our	NSF	sponsors,	Sankar	Basu	and	Ahmed	
Lori,	 for	making	 this	workshop	 possible,	 their	 active	 participation	 in	 the	workshop,	 and	
their	follow‐up	actions	in	addressing	recommendations	from	the	workshop.	

We	are	privileged	to	have	been	part	of	this	study,	and	wish	to	thank	the	CPOM	workshop	
attendees	for	their	time,	their	effort,	and	their	insight.	

	

Massoud	Pedram,	David	Brooks,	and	Timothy	Pinkston	

	

	

 5

Contents	
Disclaimer	..	2

Organization	and	Contributions	..	3

Organizers	...	3

Core	Working	Group	(Area)	Leaders	...	3

NSF	Sponsors	...	3

Government	and	Industry	Liaisons	..	3

Workshop	Participants	..	3

Foreword	..	4

Executive	Summary	...	8

Technology	and	Circuits	Area	Summary	...	10

Circuits	and	Micro‐architecture	Area	Summary	..	12

Micro‐architecture	and	Systems	Area	Summary	..	14

Systems	and	Applications	Area	Summary	..	16

Putting	It	All	Together	..	17

Area	1:	Technology,	Circuits,	and	Beyond	..	19

Success/Failure	Stories	..	19

Power	delivery	–	Circuit	design	...	19

Reliability	...	21

Cross‐Layer	Research	Needs	..	21

Energy	harvesting	and	energy	recycling	..	21

Memory,	device,	tech.	heterogeneity	...	21

Device/Circuit/Architecture	Co‐design	..	23

Active	cooling	...	24

Aging	management	..	24

On‐chip	power	delivery/regulation	...	25

Enabling	adaptability	by	predicting	the	system	workload	..	26

Approximate	computing	and	designing	with	unreliable	components	26

Power	estimation	and	modeling	..	27

Area	2:	Circuits,	Microarchitecture,	and	Beyond	...	28

Success/Failure	Stories	..	28

Success	Stories	...	28

 6

Lessons	Learned	...	30

Cross‐layer	Power	Optimization	Challenges	...	32

Models	and	Tools	for	Effective	Energy‐Based	Design‐Space	Exploration	32

Efficient	 Simulation	 and	 Architecture	 Exploration	 Support	 for	 Heterogeneous	
Architectures	and	Emerging	Technologies	...	33

Reliability	...	34

Cross‐layer	Power	Optimization	Opportunities	..	35

Heterogeneity	...	35

Specialization	...	36

Further	Advances	on	Standard	Interface	...	36

Memory	Power	..	37

Co‐optimization	...	38

Platform‐Specific	Optimization	..	38

Area	3:	Micro‐architecture,	Systems,	and	Beyond	..	42

Success	Stories	...	42

Opportunities	 and	 Possible	 Approaches	 to	 address	 the	 challenges	 via	 cross‐layer	
approaches	...	43

Green	Computing	..	43

Processing‐Near‐Memory	...	44

Tools	...	44

Criticality	..	44

New	Abstraction	Layers	..	44

Example	Topic	Areas	...	45

Modeling,	formal	specifications,	and	abstraction	layers	...	45

Accounting	for	and	Minimizing	Communication	Distances	...	46

Supporting	heterogeneity	...	46

Why	now?	...	46

Quantitative	Targets	..	48

Cross‐Layer	Examples	...	48

Example	#1:	Low‐Power	Design	With	Emerging	Non‐Volatile	Memories	48

Example	#2:	Designing	with	unreliable	silicon	...	49

Example	#3:	Energy‐Reducing	Cores	..	50

Interfaces	that	facilitate	effective	cross‐layer	optimizations	...	51

Area	4	–	Systems,	Applications,	and	Beyond	...	55

 7

Clear	Examples	of	Success	and	Failure	..	55

Challenges:	Exemplified	by	the	Case	Studies	and	More	...	60

Opportunities	Across	Layers	..	64

Possible	benefits	...	66

Possible	approaches	(key	ideas,	promising	areas	that	should	be	investigated)	66

Platform‐specific	cross‐layer	approaches	...	67

Gaps	and	Potential	Benefits	..	69

Research	Opportunity	with	Applications	and	System	Focus	...	70

	

 8

Executive Summary

There	is	a	current	and	growing	crisis	in	power	management	for	the	entire	range	of	power‐
performance	 computer	 infrastructure	 design	 points—from	mobile	 to	 enterprise	 to	 cloud	
computing.	 	The	NSF	Cyberinfrastructure	 for	21st	Century	Science	and	Engineering	 (CIF21)	
Advanced	 Computing	 Infrastructure	 Vision	 and	 Strategic	 Plan1	 documents	 the	 need	 for	
energy‐	and	power‐efficient	computing.		Other	recent	strategic	visioning	studies,	including	
a	 white	 paper	 by	 the	 Computing	 Community	 Consortium	 on	 21st	 Century	 Computer	
Architecture2	and	the	NITRD	Program	2012	Strategic	Plan3,	emphasize	the	 importance	of	
energy‐efficient	 computing	 for	 sustaining	 advancements	 in	 information	 technology	 and	
addressing	critical	societal	challenges.	The	exploration	of	holistic	power	optimization	and	
management	 solutions	 that	 cut	 across	 multiple	 layers	 of	 the	 computing	 stack	 and	
infrastructure	will	better	enable	available	opportunities	 for	maximizing	energy	efficiency	
to	be	fully	exploited.	

It	is	natural	to	ask:		Why	is	cross‐layer	power	management	promising?		Without	sacrificing	
performance	 and	 reliability,	 what	 is	 missing	 between	 the	 various	 layers	 that	 inhibit	
effective	 power	 optimization	 and	 management?	 	 What	 are	 key	 research	 challenges?	 An	
NSF‐sponsored	 workshop	 on	 Cross‐layer	 Power	 Optimization	 and	 Management	 (CPOM)	
was	held	at	the	University	of	Southern	California	on	February	10‐11,	2012,	to	address	these	
and	other	important	questions.	It	was	organized	into	four	parallel	tracks:	

 Area	1	‐	Technology,	Circuits	and	Beyond	

 Area	2	‐	Circuits,	Micro‐architecture	and	Beyond	

 Area	3	‐	Micro‐architecture,	Systems	and	Beyond	

 Area	4	‐	Systems,	Applications	and	Beyond	
This	timely	workshop	provided	a	forum	for	leading	experts,	including	representatives	from	
government	 funding	 agencies,	 to	 discuss	 methods	 and	 means	 by	 which	 cross‐layer	
approaches	 to	 power	 optimization	 and	management	 can	 be	 investigated,	 developed	 and	
adopted	by	the	research	community	at	large.			

			Several	high‐level	findings	emerged.	

1. Energy	 efficiency	 has	 become	 a	 first‐order	 design	 goal.	 	 Designing	 for	 both	 high	
performance	 and	 low	 energy	 is	 something	 companies	 would	 claim	 to	 have	 been	
doing	for	years	already.		But	the	design	process	is	still	not	fully	adjusted	for	this.		For	
example,	 how	 does	 the	 design	 process	 change	 if	 one	 starts	 from	 the	 following	
viewpoint,	 “Everything	 is	 turned	 off;	 what	 should	 be	 turned	 on	 for	 each	
computation?”		

																																																								
1	 NSF	 Cyberinfrastructure	 for	 the	 21st	 Century	 Science	 and	 Engineering	 (CIF21)	 Advanced	 Computing	
Infrastructure	Vision	and	Strategic	Plan,	www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf,	February	2012.	

2	CRA	CCC	21st	Century	Computer	Architecture	White	Paper,	http://cra.org/ccc/whitepapers.php,	May	2012.	

3	 NITRD	 2012	 Strategic	 Plan,	 http://www.nitrd.gov/pubs/strategic_plans/2012_NITRD_Strategic_Plan.pdf,	
July	2012.	

 9

2. New	extreme‐scaled	CMOS	devices	are	being	introduced—these	devices	are	subject	
to	significant	variability	and	aging	effects	and	are	expected	to	operate	reliably	and	
with	 high	 switching	 speeds	 at	 very	 low	 supply	 voltages.	 	 Current	 design	 tool	
methodologies	 and	 tools	 are	 not	 capable	 of	 achieving	 the	 full	 potential	 of	 these	
devices	in	VLSI	circuits	and	systems.	

3. Power	 efficiency	 is	 about	 not	 only	 low	 leakage	 currents	 and	 small	 switched	
capacitances	 but	 also	 the	 efficiency	 of	 the	 power	 distribution	 network,	 power	
conversion	circuitry,	and	heat	 removal.	A	holistic	approach	 to	power	optimization	
and	management	that	considers	all	this	is	in	great	demand.		

4. A	 general	 shift	 away	 from	 CPU‐centric	 design	 thinking	 is	 taking	 place.	 In	 mobile	
systems,	 the	 focus	should	be	on	display,	radio,	and	sensors.	 In	enterprise	systems,	
memory,	 storage,	and	networks	are	 increasingly	more	 important	 in	 terms	of	 their	
power	usage.	To	go	beyond	 the	 incremental	 energy	efficiency	 gains	possible	 from	
component‐wise	 optimization,	 one	must	 consider	 the	 coordination	 and	 control	 of	
storage,	networking,	memory,	compute,	and	cooling	infrastructure	in	a	system.		By	
tackling	the	optimization	problem	as	a	whole,	one	can	then	develop	solutions	at	one	
layer	that	will	be	exploited	at	other	layers.	

5. An	 energy‐efficient	 system	 must	 exploit	 component	 heterogeneity	 and	 dynamic	
adaptation.	Heterogeneity	would	allow	energy‐optimized	components	to	be	brought	
to	 bear	 as	 application	 characteristics	 change.	 Dynamic	 adaptation	 would	 in	 turn	
enable	 the	 system	 to	 adapt	 and	 provision	 hardware	 components	 to	meet	 varying	
workload	 and	 performance	 requirements,	which	 in	 turn	 could	 eliminate	 resource	
over‐provisioning	and	energy	waste.	

6. Existing	 techniques	 are	 sometimes	 localized	 and	 sometimes	 cross‐layer,	 but	
often/frequently	 ad	 hoc.	 	 There	 is	 a	 need	 to	 invent	 techniques	 that	 can	 be	
orchestrated	and	analyzed	in	terms	of	how	they	compose	together	and	interact.		

7. It	 is	 essential	 to	 understand	 and	 properly	 model	 the	 emerging	 application	 and	
mobile	user	behavior	and	develop	metrics	for	user	experience	that	allow	a	(mobile)	
system	to	decide	how	much	power/energy	to	allocate	to	a	given	computation.		

8. Power‐efficient	 systems	 of	 the	 near	 future	will	 comprise	 of	 heterogeneous	multi‐
core	designs,	with	embedded	accelerator	“sub‐cores”	connected	via	heterogeneous	
interconnect	 elements.	 It	 is	 important	 to	 develop	 the	 programming	 model	 and	
software	 task	 scheduling	 support	 as	 well	 as	 low	 power/thermal	 management	
solutions	for	such	a	fabric.	An	important	step	in	this	direction	is	the	development	of	
System‐Level	 Instruction	 Set	 Architectures	 that	 allow	 coarser‐grained	 chunks	 of	
computation	to	be	managed	and	scheduled,	thereby	enabling	longer‐term	planning	
of	communication	and	energy	across	large	multi‐core	chips.	

9. Other	 issues	stand	out	as	critical	cross‐layer	power	optimization	and	management	
design	 challenges,	 including	 (i)	 statistical	 variability	 and/or	uncertainty	 about	 the	
workloads,	 circuit	 parameters,	 and	 operating	 environment	 of	 a	 target	 system,	 (ii)	
lack	 of	 standard	 interfaces	 that	 enable	 bi‐directional	 information	 flow	 across	
different	 layers	 of	 the	 design	 stack	 and	 cross‐layer	 optimization	 solutions,	 (iii)	
absence	 of	 a	 formal	 framework	 to	 capture	 and	 explicitly	 present	 power,	 latency,	

 10

bandwidth,	 reliability	 tradeoffs	 to	 the	 designers,	 and	 (iv)	 lack	 of	 standard	
benchmarks	 and	 evaluation	 techniques	 to	 enable	 realistic	 evaluation	 of	 proposed	
approaches	and	uniform	comparison	between	approaches.	

In	 the	 following,	a	more	detailed	description	of	 the	 findings	and	recommendations	of	 the	
four	working	groups	(focus	areas)	are	summarized.		

Technology and Circuits Area Summary

To	kick	off	the	discussion,	the	working	group	considered	a	list	of	key	questions,	including	
the	following.	How	will	technology	transition	from	22	nm	to	11	nm	technology	nodes	(e.g.	
the	 International	Technology	Roadmap	for	Semiconductors	roadmap)	affect	 the	design	of	
power‐efficient	 integrated	 circuits	 and	 on‐chip	 modules?	 What	 are	 the	 impacts	 of	 3D	
integration	 (using	 through‐silicon	vias),	 advanced	on‐die	 interconnect	 (including	 thinned	
silicon	and	fine‐pitch	silicon‐silicon	interconnections),	and	new	memory	devices	(including	
Spin‐Torque‐Transfer	RAM	and	MRAM)	on	the	chip's	power	efficiency	and	reliability?	What	
mix	of	 super‐threshold	 and	near‐threshold	 computing	devices	 is	desired	 for	 good	power	
efficiency	vs.	 circuit	 speed	 tradeoffs?	The	 following	 is	 a	 summary	of	 the	group’s	 findings	
and	recommendations.		

Motivation	 and	 Trends—With	 shrinking	 CMOS	 minimum	 feature	 sizes,	 higher	 chip	
densities,	and	lower	operating	voltages,	it	is	the	case	that	process,	voltage,	and	temperature	
(PVT)	 variability	 have	 become	 significant	 challenges	 for	 designers	 of	 power‐efficient	
integrated	circuits.	New	methods	for	power	optimization	and	management	are	needed	that	
are	robust	against	these	sources	of	variability	and	uncertainty.	Steeper	subthreshold‐slope	
switches	will	also	be	necessary	to	address	the	leakage	problem	and	allow	ultra	low‐voltage	
operation.	Asymmetric	devices	(such	as	a	drain‐underlapped	FinFET;	or	an	asymmetrically	
source/drain	doped	FinFET)	can	 lead	to	simultaneous	 improvement	 in	both	performance	
and	 reliability	 of	 key	 circuit	 elements	 such	 as	 static	 memory	 cell.	 On‐chip	 non‐volatile	
memory	 technologies	will	 emerge	 and	 get	 embedded	with	 the	 logic	 circuitry	 to	 achieve	
higher	 power	 efficiency.	 Heterogeneous	 components	 (digital,	 analog/RF/microwave,	 and	
optical)	will	be	integrated	on	the	same	chip,	most	likely	by	employing	3‐D	IC	(TSV‐based)	
technology	 platforms.	 Near	 threshold	 operation	 being	 one	 of	 the	 most	 energy	 efficient	
design	 points,	 various	 low	 voltage	 CMOS	 circuit	 and	 architecture	 options	 at	 the	 near	
threshold	region	of	computing	will	emerge	and	be	used	to	achieve	significant	improvement	
in	 power	 efficiency	 when	 device/circuit	 co‐design	 is	 considered	 for	 near‐threshold	
operations.	

Challenges	and	Opportunities—CMOS	technology	still	has	a	lot	of	life	in	it.	We	expect	that	
a	 new	 breed	 of	 multi‐gate	 transistors	 such	 as	 FinFETs	 and	 Tri‐gates	 will	 allow	 CMOS	
scaling	 to	 10	 nm	or	 below.	 For	 this	 to	 happen,	 however,	 one	must	 develop	 analysis	 and	
simulation	 tools	 to	 characterize	 properties	 such	 as	 delay,	 power/energy	 efficiency,	 and	
variation/aging	tolerance	of	 the	new	devices.	 In	addition,	we	must	also	explore	how	new	
multi‐gate	 transistor	 devices	 can	 be	 mixed	 with	 traditional	 CMOS	 devices	 for	 designing	
memory	and	logic	cells	that	can	operate	at	very	low	voltages.		

Any	 suitable	 steep‐subthreshold	 slope	 device	will	 dramatically	 reduce	 the	 chip's	 leakage	
power,	 thereby	 making	 chips	 more	 power/energy‐efficient	 and	 reducing	 thermal	

 11

problems.	In	the	future,	steeper	subthreshold‐slope	switches	(such	as	tunnel‐FETs	(TFET),	
NEM‐FETs,	 IMOS,	 etc.,	 will	 be	 necessary	 to	 address	 the	 leakage	 problem	 at	 the	 most	
fundamental	 level	and	 to	allow	ultra	 low‐voltage	operation.	Corresponding	circuit	design	
challenges	will	also	need	to	be	addressed	for	such	non‐CMOS	devices.	

For	CMOS	circuits,	there	are	several	important	aging	mechanisms	that	must	be	taken	into	
consideration,	 such	as	bias	 temperature	 instability,	 time‐dependent	dielectric	breakdown	
in	 the	 gate	 oxide	 and	 interlayer	 dielectrics,	 hot	 carrier	 injection,	 and	 so	 on.	 There	 are	
numerous	 opportunities	 for	 cross‐layer	 optimizations	 to	 manage	 circuit	 aging.	 It	 is,	
however,	 vital	 to	 provide	 appropriate	 “hooks”	 to	 enable	 information	 transfer,	 from	 the	
point	of	 view	of	modeling,	 real‐time	sensing,	 and	 real‐time	adaptivity,	 that	 enables	 these	
cross	 layer	 optimizations.	 Other	 important	 research	 problems	 are	 the	 development	 of	
models	of	appropriate	complexity	and	accuracy	at	each	layer	and	enabling	easy	cross‐layer	
information	transfer	and	strategies	for	controlling	the	amount	by	which	a	circuit	may	age	
without	causing	circuit	failures,	while	ensuring	that	system‐level	performance	metrics	are	
optimized.			

With	respect	to	near	threshold	computing,	a	key	challenge	is	the	development	of	a	cross‐
layer	 energy‐delay	 optimization	 framework	 that	 spans	 technology	 advancement	 at	 the	
device	 layer	 and	 optimizations	 at	 the	 circuit	 layer.	 In	 particular,	 key	 elements	 of	 such	 a	
framework	include	methods	for	delay/energy/variation	tolerance	characterization	of	new	
multi‐gate	 transistors	 such	 as	 FinFETs	 and	 Tri‐gates,	 a	 multi‐layer	 simulation	 hierarchy	
that	can	answer	the	question	of	how	new	multi‐gate	transistor	devices	can	be	mixed	with	
traditional	CMOS	devices	 to	produce	memory	and	 logic	 cells	 that	 can	operate	 seamlessly	
between	 super‐threshold	 and	 near‐threshold	 voltages,	 and	 optimal	 provisioning	 of	
heterogeneous	circuit	elements	and	logic	families	that	can	operate	in	the	near‐threshold	or	
super‐threshold	regimes.	

Power	 delivery,	 regulation	 and	 power	 management	 circuits	 provide	 a	 foundation	 for	
delegating	 dynamic	 power/thermal	management	 directives	 and	must	 be	 optimized	with	
cross‐layer	 considerations.	 At	 the	 circuit	 level,	 the	 power	 distribution	 and	 DC‐DC	
converters	must	be	optimized	to	optimally	tradeoff	between	power	efficiency,	supply	noise,	
stability	 and	 transient	 response	 time.	 New	 materials	 and	 process	 technologies	 can	
significantly	 impact	 key	 characteristics	 of	 on‐chip	 voltage	 regulators,	 and	 hence	must	 be	
considered	as	part	of	the	optimization	process.	The	achievable	system	power	efficiency	is	a	
joint	function	of	the	power	loss	in	power	delivery	and	the	energy	savings	achieved	through	
dynamic	power	management	that	runs	on	top	of	it.		

Synthesizing	 circuits	 with	 different	 quality‐energy	 efficiency	 values	 via	 voltage	 scaling,	
gate‐level,	or	algorithmic	transformations	can	achieve	significant	power	savings.	This	 is	a	
promising	 possibility	 for	 systems	 that	 can	 tolerate	 imperfect	 results,	 such	 as	 signal	
processing,	data	mining,	and	learning.	Cross‐layer	approaches	are	essential	in	this	domain.	

Research	on	non‐Si	devices	for	a	better	switch	or	 for	highly	dense	memory	elements	will	
continue	 and	 accelerate.	 Novel	 devices/technologies	 include	 carbon	 electronics,	 tunnel	
FETs,	spin	transistors	and	spin	memories,	and	so	on.		It	is	expected	that	proper	co‐design	
and	exploration	of	novel	circuits	suitable	for	such	new	devices	are	required	to	determine	
how	they	replace	or	serve	as	add‐on	to	CMOS	technology.	Power	models	are	available	for	

 12

CMOS,	 but	must	 be	 extended	 for	 emerging	 beyond‐CMOS	 technologies.	 The	 bigger	 need,	
however,	 in	 both	 today's	 CMOS	 and	 future	 beyond‐CMOS	 technology,	 is	 for	 true	
architectural	 level	 power	 models.	 Many	 attempts	 have	 been	 made,	 but	 the	 problem	
remains	open	and	must	be	solved	in	order	to	allow	design	of	the	runtime	environment	and	
software	 level	 power	management.	 In	 addition,	 there	 are	no	 good	 abstractions	 today	 for	
expressing	the	power	demands	at	high	levels	of	abstraction	that	are	usable	in	the	currently	
practiced	design	methodology.	

A	 fundamental	way	 to	 bring	 about	 a	 revolutionary	 change	 in	 energy	 efficiency	 of	 future	
circuits	 is	 to	 move	 to	 a	 “non‐thermionic”	 carrier	 injection‐based	 device	 that	 can	
significantly	lower	the	leakage	power	which	is	projected	to	be	beyond	acceptable	levels	for	
deep	nanoscale	CMOS	devices.	Thermoelectric	devices	and	materials	can	be	used	to	convert	
the	heat	flux	from	a	hot	spot	into	electrical	energy	that	could	be	used	to	power	peripheral	
circuits.	An	appropriate	simulation	 framework	needs	to	be	developed	that	can	accurately	
estimate	the	scavenging	performance	of	these	embedded	thermoelectric	devices,	including	
parasitic	losses	due	to	the	interfaces.	

Circuits and Micro-architecture Area Summary

To	kick	off	the	discussion,	the	working	group	considered	a	list	of	key	questions,	including	
the	 following.	 What	 analytical	 models	 or	 simulation	 tools	 are	 needed	 to	 evaluate	 the	
power/energy	 efficiency,	 performance,	 and	 thermal	 issues	 for	 a	 system	 that	 is	 being	
designed?	How	do	the	circuit‐level	power	optimization	knobs	such	as	multi‐VDD	and	multi‐
VTH	 designs	 affect	 decisions	 at	 the	 micro‐architecture	 level?	 What	 type	 and	 degree	 of	
heterogeneity	(including	general	purpose	cores	with	different	EPI	and	IPS	values	as	well	as	
special	purpose	hardware	accelerators)	should	be	provisioned	to	achieve	a	good	tradeoff	
between	power,	latency,	and	design	cost?	With	the	rising	noise	levels	and	dynamic	faults	in	
the	 circuits,	 what	 micro	 architectural	 techniques	 are	 needed	 to	 combat	 these	 transient	
errors?	What	about	the	aging	effects	(NBTI,	EMI,	etc.)?	The	following	is	a	summary	of	the	
group’s	findings	and	recommendations.		

Motivation	and	Trends—Impressive	progress	has	been	made	in	the	past	two	decades	on	
power	 optimization,	 which	 has	 made	 it	 possible	 to	 have	 billion‐transistor‐cellphones	
operated	 by	 battery	 power	 without	 recharging	 for	 more	 than	 a	 hundred	 hours.	
Instrumental	 to	 such	 success	 stories	 has	 been	 the	 introduction	 of	 standards	 such	 as	 the	
Advanced	Configuration	and	Power	 Interface	 (ACPI).	While	ACPI	has	served	 the	needs	of	
technologies	to	date,	newer	CPOM	approaches	(such	as	supply	voltage	level	optimizations	
that	are	independent	of	the	operating	frequency	control)	may	not	fit	the	abstractions	laid	
out	in	the	ACPI.		

In	 today’s	 multi‐core	 processor	 chips,	 per‐core	 dynamic	 frequency	 scaling	 capabilities,	
along	with	global	voltage	scaling,	provide	knobs	that	are	tightly	integrated	with	a	collection	
of	 hardware	 sensors	 and	 with	 the	 power	 management	 firmware.	 By	 leveraging	 on‐chip	
hardware	 counters,	 zone‐based	 temperature	 sensors,	 and	 critical	 path	 monitors,	 chip	
power	and	performance	metrics	can	be	monitored	and	managed	at	run	time	for	maximum	
performance,	 energy	 efficiency,	 and	 reliability.	 The	 cross‐layer	 power	 optimization	 and	
management	 framework	 is,	 in	general,	 a	way	 for	a	 lower‐level	 layer	 to	provide	a	 feature	
that	 enables	 the	 control	 knobs,	 and	 an	 upper	 layer	 to	 utilize	 the	 control	 knobs.	 This	

 13

approach	 can	 achieve	 a	 power	 saving	 closer	 to	 the	 optimal	 than	 within‐layer	 power	
optimization	 because	 a	 higher	 layer	 has	more	 information	 from	 the	 applications	 and/or	
users	and	is	aware	of	more	accurate	information	about	the	system	idleness.	A	well‐defined	
standard	 interface	 specification	 between	 layers	 is	 crucial	 for	 cross‐layer	 power	
optimization.		

Architectural	simulation	research	has	a	long	history,	but	by	no	means	is	a	solved	problem.	
The	 previous	 simulation	 speedup	 techniques	 while	 very	 successful	 for	 single‐core	
processors,	 are	 not	 easily	 extended	 to	 multi‐core,	 parallel	 simulation	 due	 to	 the	
complications	 of	 inter‐core	 communication,	 synchronization,	 and	 modeling	 of	 shared	
resources.	Moreover,	 the	 introduction	 of	 heterogeneous	 components	 further	 complicates	
the	simulation	requirements.	The	opportunity	for	cross‐layer	design	and	optimization,	for	
example,	 considering	 the	use	of	near‐threshold	circuits	and	on‐chip	non‐volatile	memory	
technologies,	also	complicates	the	simulation	models.	 	Finally,	technology	scaling	to	10nm	
and	below	and	related	PVT‐induced	issues	require	an	increasing	cross‐layer	optimization	
and	 management	 focus	 jointly	 for	 performance,	 power	 efficiency,	 and	 reliability	 in	 the	
coming	years.	Today’s	simulation	infrastructures	that	model	power	and	performance	lack	
reliability	modeling	 and	 overlook	 the	 existence	 of	 control	 systems	 that	 can	 dynamically	
alter	 operational	 conditions	 affecting	 quantities	 of	 interest.	 Multi‐timescale	 operation	 of	
these	control	systems	also	increases	the	modeling	and	simulation	challenges.		

Challenges	and	Opportunities—As	 technology	 scales	beyond	22nm,	 reliability	of	CMOS	
devices	 is	decreasing.	This	has	 traditionally	 been	overcome	with	guard	bands.	There	 are	
tremendous	benefits	in	simplifying	the	design	process	and	reduce	costs	if	reliability	can	be	
relaxed.	 Furthermore,	 reducing	 the	 requirements	 of	 correctness	 can	 provide	 energy	
benefits	because	circuits	can	operate	at	common	case	operating	points	and	reduce	margins	
for	guard	band,	etc.	The	implication	then	for	the	higher	layers	is	that	the	hardware	is	not	
always	 correct.	 This	 introduces	 a	 fundamental	 cross‐layer	problem	 on	how	 to	 expose	 the	
hardware’s	lack	of	correctness	up	through	to	the	software.		

Architectural	 heterogeneity	 means	 including	 cores	 of	 various	 computing	 and	 storage	
capabilities	 (e.g.,	 small	 vs.	 big	 cores,	 SRAM	 vs.	 eDRAM	 vs.	 NVM)	 and	 extensive	 use	 of	
hardware	 accelerators	 in	 a	 system‐on‐chip	 design.	 Technological	 heterogeneity	 means	
including	 logic	 blocks	 composed	 of	 different	 device	 and	 interconnect	 technologies	 (e.g.,	
CMOS	 vs.	 non‐Si	 based	 devices,	 metal	 interconnect	 vs.	 RF	 or	 optical	 channels,	 near‐
threshold	 vs.	 superthreshold	 operating	 logic.)	 Heterogeneity	 provides	 a	 multitude	 of	
performance/power/reliability	 tradeoff	 opportunities.	 However,	 it	 is	 difficult	 to	
manufacture	 such	 heterogeneous	 systems	 at	 low	 cost	 (with	 high	 yield)	 in	 spite	 of	
promising	path	based	on	3D	integration.	Other	key	challenges	include	(static)	provisioning	
of	 this	 heterogeneity	 and	 making	 it	 reconfigurable	 are	 two	 Challenges	 of	 designing	
heterogeneous	 circuits.	 Furthermore,	 recent	 studies	 indicate	 that	 the	 potential	
performance/power/reliability	 improvement	 associated	 with	 the	 emerging	 device	
technologies	 and	 heterogeneous	 architectures	 are	 significantly	 reduced	 without	 careful	
design	planning.	This	clearly	highlights	the	need	for	modeling	and	tools	infrastructures	for	
effective	adaptation	of	such	systems.	

Platform‐specific	 optimizations	 (embedded	 systems):	New	 abstractions	 and	 interfaces	
have	to	be	investigated	to	coordinate	the	management	of	energy	harvesting	units,	electrical	

 14

energy	 storage	 modules	 together	 with	 the	 management	 of	 power	 consuming	 modules.	
Some	 of	 the	 embedded	 systems,	 such	 as	 environmental	monitoring	 systems,	 are	 natural	
candidates	 for	approximate	computing.	Other	embedded	systems,	 for	example	embedded	
controllers	of	airplanes	or	automobiles,	have	a	nearly	zero	tolerance	 for	error.	Reliability	
constrained	energy	optimization	at	design	time	should	be	investigated	for	different	types	of	
embedded	systems.	

Platform‐specific	optimizations	(mobile	computing	systems):	The	microarchitecture	of	a	
mobile	computing	system	should	allow	the	 trade‐off	of	reliability	 for	energy	efficiency	so	
that	 it	 satisfies	 the	 QoS	 and	 other	 SLA	 requirements.	 To	 enable	 correct	 operation	 of	 a	
system	that	can	tolerate	low‐level	errors	in	its	building	blocks,	error	detection,	corrections,	
and	 recovery	mechanisms	should	be	 investigated.	Display	and	wireless	 interface	are	 two	
major	 power‐consuming	 components	 in	 a	 mobile	 computing	 system.	 Cross‐layer	 power	
optimization	 techniques	 that	 target	 power	 minimization	 in	 both	 LCD	 and	 OLED‐based	
displays	 should	 be	 considered.	 Another	 hardware	 trend	 of	mobile	 systems	 is	 the	 use	 of	
multiple	antennas	for	improved	network	speed	and	overall	network	capacity.	This	suggests	
an	 important	 cross‐layer	 power	 optimization	mechanism	 that	 power‐manages	 the	multi‐
antenna	transceivers	based	on	communication	requirement.	

Platform‐specific	optimizations	(servers):	We	need	to	focus	more	on	cross‐layer	channels	
to	 exchange	 power	 models	 and	 workload	 requirements	 between	 microarchitecture	 and	
upper‐level	 applications	 in	 server	 systems.	 More	 accurate	 power	 models	 and	 highly	
standard	constraint	languages	are	believed	to	facilitate	the	cross‐layer	power	management.	
New	memory	 technologies	 such	as	NVM	should	be	 investigated.	Heterogeneity,	 including	
cores	 of	 various	 computing	 capabilities	 and	 extensive	 use	 of	 accelerators,	 should	 be	
introduced	to	increase	energy	efficiency	at	this	level.		

Micro-architecture and Systems Area Summary

To	kick	off	the	discussion,	the	working	group	considered	a	list	of	key	questions,	including	
the	 following.	 What	 micro‐architecture	 is	 needed	 for	 effective	 implementation	 and	
exploitation	of	CPOM?	How	should	global	interconnect	be	designed	in	systems	with	a	large	
number	 of	 diverse	 and	 interacting	 IP	 blocks	 in	 order	 to	 power‐efficiently	 support	 the	
required	 traffic	 patterns?	 What	 system	 architecture	 (memory	 hierarchy,	 computational	
resources,	 network‐on‐chip,	 communication	 protocol,	 etc.)	 is	 optimal	 for	 CPOM	 while	
meeting	 the	 application‐level	 requirements?	 What	 advances	 are	 needed	 to	 support	
performance	 isolation	 (physical	 or	 virtual)	 in	 systems	 with	 shared	 resources?	 What	 is	
needed	 at	 the	 micro‐architecture	 and	 system	 software	 interface	 to	 improve	 power	
efficiency	 in	the	cloud	and	to	enable	energy‐proportional	computing	across	various	other	
platforms?	The	following	is	a	summary	of	the	group’s	findings	and	recommendations.		

Motivation	and	 trends—Environmental	 pressures	 and	government	 rating	 systems	have	
resulted	in	initial	experimental	R&D	in	the	area	of	“green”	or	“zero‐emission”	data	centers.	
In	 such	 approaches,	 the	 heat	 dissipated	 from	 data	 centers	 is	 reused	 to	 serve	 as	 energy	
sources	for	city	heating	and	water	desalination	projects.	Recent	research	has	proposed	the	
use	 of	 renewable	 energy	 sources	 (specifically	 solar	 power)	 to	 ease	 the	 power	 burden	 of	
servers.	These	 ideas	call	 for	cross‐layer	optimization	and	modeling	across	energy	supply,	
workload‐driven	demand	and	heat	recycling.		

 15

3D	packaging	is	an	emerging	technology	that	facilitates	close	integration	of	processor	units	
and	memory	units.	 	Thus,	 there	 is	an	opportunity	to	access	DRAM	main	memory	without	
traversing	 expensive	 off‐chip	 interconnects.	 	 This	 helps	 overcome	 the	 power	 wall	
associated	 with	 achieving	 high	 bandwidth	 access	 to	 memory.	 However,	 we	 need	 new	
programming	models	to	facilitate	application	development,	new	compiler	strategies	for	the	
low‐power	 cores	 on	 a	 3D	 stack,	 and	 runtime	 systems	 that	 can	 manage	 co‐ordination	
between	many	 threads.	 	 Furthermore,	 the	 tradeoffs	 between	 capacity	 and	 bandwidth	 at	
different	levels	of	the	memory	hierarchy	could	change	significantly,	and	will	require	cross‐
layer	optimization	between	architectural,	programming	systems,	and	application	layers.	

Writing	 parallel	 programming	 has	 been	 one	 of	 the	 major	 challenges	 in	 programming.	
Parallel	programming	is	fundamentally	hard,	but	we	could	also	argue	that	the	lack	of	tools	
to	help	programs	 is	another	cause.	 	Assisting	parallel	programming	 is	 important	both	 for	
programmer	 productivity	 and	 program	 efficiency	 in	 this	 heterogeneous	 multicore	 era.		
Hence,	 developing	 software	 tools	 that	 can	 help	 programmers	 and/or	 other	 software	
systems	 is	a	pressing	need.	Tools	 to	provide	which	algorithms	might	be	more	efficient	 in	
the	underlying	hardware	can	also	improve	the	quality	of	the	code.	

Not	 all	 computational	 threads	 are	 equally	 important	 and	 critical.	 Knowing	 criticality	 can	
provide	many	opportunities	in	various	layers.	For	example,	non‐critical	work	can	be	easily	
sent	to	low‐performance	but	energy	efficient	cores/memories.	We	can	also	control	DVFS	to	
improve	energy	efficiencies	for	non‐critical	work.	Unfortunately,	right	now	there	is	no	good	
way	 for	 hardware	 to	 get	 this	 criticality	 information	 from	 upper	 layers.	 There	 should	 be	
some	 generic	 ways	 of	 transferring	 this	 information	 from	 software	 systems	 to	 the	
underlying	hardware.		

Instruction	 set	 architecture	 (ISA)	 has	 been	 a	 great	 way	 of	 hiding	 the	 complexity	 of	
hardware	 or	 software	 by	 providing	 a	 concrete	 and	 stable	 interface	 between	 two	 layers.			
Consequently,	 quite	 a	 lot	 of	 information	 from	 software	 is	 lost	 on	 the	way.	 Examples	 are	
criticality,	data‐flow	information,	data	locality,	data	movements	etc.		As	a	result,	hardware	
must	regenerate	 information	at	 runtime,	 such	as	 finding	critical	 threads,	 critical	data	etc.	
Hence,	 this	 is	 the	 time	 to	 re‐think	 the	granularity	of	 ISAs.	 If	 software	 can	pass	hardware	
more	summary	information	about	its	characteristics	and	requirements,	hardware	can	use	
that	information	to	improve	performance	and	power.		

Challenges	and	Opportunities—Lower	levels	of	abstraction	in	the	design	hierarchy	have	
better	coupling	between	layers,	because	their	specification	is	based	on	established	models,	
for	example,	physical	circuit	models,	Boolean	algebra,	register‐transfer	languages,	etc.	One	
of	 the	 things	 that	 inhibit	 cross‐layer	 optimizations	 from	 the	 system	 level	 to	 the	
(micro)architectural	 layer	 and	 downwards	 is	 the	 lack	 of	 a	 formal	 specification	 language.		
This	area	is	in	its	infancy	in	terms	of	experimental	research	or	commercial	systems	such	as	
BlueSpec	and	SystemC.	Significantly	more	investment	is	needed	to	bridge	the	gap	between	
the	system	architecture	level	and	the	physical	implementation	layers.		

In	addition	to	design‐time	specifications	across	the	architectural	boundaries,	there	is	also	a	
need	 for	 higher	 abstraction	 layers	 to	 assist	 in	 system‐level	 mapping	 and	 scheduling	
choices,	particularly	when	dynamic	and	heterogeneous	parallelism	are	involved.		We	argue	
for	System‐Level	Instruction	Set	Architectures	(ISAs)	that	allow	coarser‐grained	chunks	of	

 16

computation	to	be	managed	and	scheduled.	 	By	avoiding	per‐instruction	handling,	energy	
overheads	 can	 be	 greatly	 reduced,	 and	 coarser‐granularities	 also	 assist	 longer‐term	
planning	of	communication	and	energy	planning	across	large	multi‐core	chips.			

The	 cost	 of	 communication	 is	 now	 significantly	 higher	 than	 the	 cost	 of	 computation.	 In	
addition,	there	is	an	order	of	magnitude	difference	in	communication	energy	depending	on	
where	 data	 is	 found	 on	 the	 chip.	 	 Similarly,	main	memory	 organizations	 are	 also	 highly	
distributed.	The	average	cost	of	communication	will	again	vary	by	an	order	of	magnitude	
depending	on	the	quality	of	data	placement	in	main	memory.		Currently,	higher	levels	of	the	
system	stack	(application,	OS,	compiler)	are	 largely	unaware	of	data	placement	 in	caches	
and	 memory	 modules.	 	 This	 disconnect	 leads	 to	 an	 order	 of	 magnitude	 increase	 in	
communication	energy	on	average.	Communication	distance	can	be	minimized	by	not	only	
placing	data	in	appropriate	regions	of	the	memory	space,	but	by	also	moving	computations	
to	 the	 memory	 when	 appropriate.	 	 .	 	 Such	 computation	 migration	 requires	 much	 more	
extensive	 support	 from	 the	 operating	 system	 and	 programming	 models	 than	 what	
currently	exists.	

Power	 optimization	 needs	 have	 driven	 the	 system	 architecture	 community	 towards	
heterogeneous	multi‐core	 designs,	with	 embedded	 accelerator	 “sub‐cores”	 connected	 via	
heterogeneous	 interconnect	 elements.	 However,	 the	 programming	 model	 and	 software	
task	scheduling	support	still	lack	the	formalism	required	to	exploit	the	full	potential	of	this	
emerging	 paradigm	 shift.	 Significant	 new	 research	 investment	 is	 needed	 to	 facilitate	 co‐
design	and	co‐optimization	across	the	application,	system	software	and	architecture	layers.		

Systems and Applications Area Summary

To	kick	off	the	discussion,	the	working	group	considered	a	list	of	key	questions,	including	
the	 following.	 What	 will	 be	 the	 dominant	 workloads	 (i.e.,	 computational	 load	 and	
memory/network	traffic	pattern)	for	different	application	classes	in	5‐10	years?	What	are	
the	applications/workloads	that	are	likely	to	place	special	requirements	on	CPOM?	How	do	
we	achieve	system‐level	power	or	energy	efficiency	under	latency,	bandwidth,	thermal,	or	
cost	 constraints?	 What	 level	 and	 amount	 of	 re‐configurability	 (both	 at	 the	 circuit	 and	
architecture	 levels)	 are	 needed	 to	 enable	 power	 efficient	 operation	 of	 a	 target	 system	
under	 various	workload	 conditions	 and	 reliability/fault	 tolerance	 requirements?	What	 is	
the	 support	 needed	 at	 the	 hardware	 and	 system	 software	 level	 to	 enable	 such	
reconfiguration?	 How	 is	 one	 to	 achieve	 optimizations	 that	 combine	 dynamic	 control,	
algorithmic	transformations,	and	compiler	optimization?	The	following	is	a	summary	of	the	
group’s	findings	and	recommendations.		

Motivation	 and	 Trends—All	 types	 of	 computing	 devices	 are	 now	 energy‐constrained	
either	due	to	performance	limitations,	battery	life,	or	electricity	cost.	While	it	is	hard	to	find	
a	silver	bullet	 that	can	address	energy	 issues	across	the	space	of	computing	applications,	
parallel	 operation	 has	 been	 heavily	 explored	 in	 recent	 years	 to	 address	 energy‐scaling	
challenges	by	exploiting	simpler,	more	parallel	components.		Continued	work	is	seen	in	this	
area	especially	as	new	programming	models	allow	programmers	to	exploit	heterogeneous	
processing	systems.		In	addition	to	parallelism,	the	trend	towards	mobile	computing	places	
increased	burden	on	 system	designers	 to	 consider	 cross‐layer,	 holistic	 solutions	 that	 are	
cognizant	 of	 the	 users’	 preferences	 in	 addition	 to	 the	 application,	 system	 software,	 and	

 17

architecture.	 	 Recent	 trends	 in	 this	 area	 include	 energy	 process	monitors,	 hybrid	 power	
knobs	to	enable	longer	and	deeper	use	of	sleep	states,	and	increased	used	of	reactive	wake‐
on	 events.	 	 Coordinated,	 cross‐layer	 tuning	 of	 applications	 and	 architecture	 is	 another	
ongoing	trend	that	has	seen	success	in	embedded	system,	HPC	platforms,	and	in	datacenter	
scale	 computing.	 	 There	 is	 potential	 for	 such	 approaches	 to	 be	 applied	more	 broadly	 to	
computing	systems.	

Challenges	and	Opportunities—Complexity	 is	 increasing	 at	 all	 layers	 of	 the	 computing	
stack,	and	power‐management	techniques	must	efficiently	navigate	this	complexity.		Cross‐
layer	 optimizations	 such	 as	 algorithmic	 transformations,	 dynamic	 runtime	 systems,	 and	
static	 compiler	 transformations	 provide	 a	 large	 design	 space	 that	 must	 be	 navigated	 to	
reduce	system‐level	energy	consumption.		Application	programmers	are	not	likely	to	want	
to	 be	 involved	 in	 power‐management,	 and	 we	 must	 develop	 middleware	 layers	 that	
provide	the	interface	between	the	applications	and	the	system.	

Given	these	challenges,	there	are	significant	opportunities	that	can	be	exploited	with	cross‐
layer	approaches	for	deeply	embedded,	mobile,	and	server	systems.		

Deeply	 Embedded	 Systems	 and	 Sensors:	 Deeply	 embedded	 systems	 and	 sensors	 will	
proliferate	 with	 the	 development	 of	 3D	 stacked	 sensors,	 solar	 cells,	 batteries,	 and	
microcontrollers.	 	 As	 the	 capabilities	 of	 these	 platforms	 expand,	 opportunities	 exist	 to	
partition	 applications	 between	 the	 client	 and	 the	 cloud	 allowing	 the	 projection	 of	 huge	
amounts	 of	 compute	 resources	 into	 the	 traditionally	 low‐performance	 embedded	 system	
domain.		Balance	between	local	compute,	communication,	and	compression	strategies	can	
target	large	improvements	in	energy‐efficiency	and	application	capability.	

Mobile	 System:	 Understanding	 of	 emerging	 application	 and	 mobile	 user	 behavior	 can	
provide	 an	 important	 lever	 on	 system	development.	 	 The	 challenges	 of	 cloud	 computing	
also	 arise	 in	 mobile	 systems,	 but	 user	 experience	 is	 paramount,	 and	 metrics	 for	 user	
experience	must	be	developed	that	allow	the	system	to	decide	how	much	power	to	allocate	
to	 a	 given	computation.	 	Mobile	 systems	 that	 interact	with	 the	 cloud	must	balance	 radio	
communication	 latency	 and	 power	 costs	with	 the	 ability	 to	 leverage	 the	 cloud	 to	 reduce	
compute	power	on	these	platforms.	

Servers:	 Compute	 density	 is	 a	 primary	 design	 metric	 for	 large	 datacenters,	 and	 this	 is	
limited	 by	 thermal	 density.	 	 Operating	 cost	 (energy)	 is	 also	 a	 primary	 motivation	 for	
energy‐efficient	 server	 design.	 	 There	 is	 a	 tremendous	 opportunity	 to	 exploit	
heterogeneous	 compute	 infrastructure	 with	 processing	 elements	 that	 have	 varying	
power/performance	 characteristics	 for	 compute,	 memory,	 interconnect,	 and	 storage.		
Exploiting	these	opportunities	require	identification	of	bottlenecks	and	runtime	systems	to	
leverage	this	heterogeneity,	and	designers	must	also	address	potential	system	costs	such	as	
multi‐version	compilation	and	tuning.			

Putting It All Together

Cross‐layer	approaches	 to	energy	efficiency	have	 the	potential	 to	deliver	 low	power	with	
significantly	 lower	 performance	 overheads	 than	 current	 intra‐layer	 approaches.	 By	
distributing	 power/thermal	 efficiency	 concerns	 across	 the	 full	 design	 stack,	 these	
approaches	can	take	advantage	of	the	information	available	at	each	layer	of	the	design	to	

 18

improve	 system	 efficiency	while	 tolerating	 variation,	 aging,	 and	 even	 errors.	 The	 best	 of	
these	 approaches	 can	 adapt	 to	 varying	 application	 characteristics	 and	 requirements,	
operating	environments,	and	changing	state	of	the	hardware	components.	

The	 work	 necessary	 to	 achieve	 energy‐efficient	 systems	 crosses	 the	 entire	 computing	
ecosystem—from	CMOS	devices	and	VLSI	circuits	to	computer	architectures	and	platforms	
to	system	software	and	user	applications.	In	other	words,	no	one	player	can	cause	change	
by	 herself.	 Cooperation	 across	 many	 disciplines	 and	 organizations	 is	 necessary	 to	
drastically	 change	 the	 computing	 system	 design	 paradigm	 in	 the	 direction	 of	 energy	
efficiency.	

The	United	States’,	and	indeed	the	world’s,	economy	depends	critically	on	energy	efficient	
operation.	The	government	and	industrial	 leaders	play	key	roles	in	funding	new	research	
areas,	providing	foundations	and	bricks	for	infrastructure	advancement,	and	in	advocating	
and	 enforcing	 standards	 to	 enhance	 sustainability	 across	 the	 board.	 The	 research	
challenges	and	opportunities	described	in	this	report	provide	US	industry	and	government	
funding	agencies	with	directions	for	developing	many	of	the	technologies	and	approaches	
that	are	needed	to	develop	energy‐efficient	systems	of	the	future	and	ensure	sustainability	
of	the	information	technology	ecosystem.	

In	 the	 following,	 we	 present	 the	 detailed	 area	 reports.	 Detailed	 pre‐workshop	 position	
statements	 from	 various	 CPOM	 workshop	 invitees	 and	 attendees	 may	 be	 found	 under	
“Position	 Statements”	 links	 on	 each	 of	 the	 Area	 Overview	 pages	 at	
http://atrak.usc.edu/cpom/	.	

	

	

 19

Area 1: Technology, Circuits, and Beyond

	

Area	Leader:	Kaushik	Roy	

Co‐Editor:	Peng	Li	

Other	Area	Members:	Mohamed	Allam,	Kaustav	Banerjee,	Keren	Bergman,	David	Blaauw,	
Eby	Friedman,	Lei	He,	Payam	Heydari,	Farid	Najm,	Michael	Orshansky,	Sachin	Sapatnekar	
	 	 	

	

Our	 sub‐group	 considered	 the	 different	 challenges,	 opportunities,	 and	 possible	 solution	
paths	for	designs	in	sub‐15nm	technology	nodes.	The	technology	options	were	divided	into	
different	 application	 domains	 classified	 in	 terms	 of	 power	 consumption	 –	
Embedded/Mobile	 Computing	 (Milli‐watts),	 Servers	 (Watts),	 and	 Sensors	 and	 networks	
(Micro‐watts.)	 The	 sub‐group	 also	 felt	 that	 cross‐layer	 designs,	 in	 particular	 with	 the	
availability	 of	 new	 technologies	 such	 as	 spin	 memories,	 III‐V	 devices,	 tunnel	 FETs,	 and	
other	 non‐CMOS	 devices,	 will	 become	 even	 more	 important.	 Heterogeneity	 in	 terms	 of	
device	and	 interconnect	 technologies	will	 lead	 to	 the	possibility	of	very	complex	and	 low	
power	designs.	

The	 following	 are	 the	 different	 research	 areas	 and	 research	 needs	 that	 the	 sub‐group	
identified.		

Success/Failure	Stories	

Power	delivery	–	Circuit	design	

In	 a	 mobile	 platform,	 power	 delivery	 includes	 power	 generation,	 regulation,	 and	
distribution	from	the	battery	through	several	levels	of	voltage	regulation	to	the	billions	of	
transistors	 (or	 loads)	 on	 integrated	 circuits.	This	 complex	 system	 includes	 a	hierarchical	
combination	 of	 power	 regulators	 and	 decoupling	 capacitors,	 decreasing	 in	 current	 and	
response	time.	Each	stage	of	the	power	delivery	system	regulates	the	current	and	voltage	
required	 at	 that	 level	 of	 the	 power	 chain.	 The	 choice	 of	 topology	 for	 the	 regulators	 is	
strongly	 dependent	 on	 the	 efficiency	 objectives	 and	 area	 constraints.	 Furthermore,	 the	
local	impedance	between	stages	also	deeply	affects	the	ability	of	the	power	delivery	system	
to	 accomplish	 the	 design	 goals.	 This	 system	 therefore	 requires	 great	 care	 in	 design	 and	
analysis	 to	ensure	 that	 the	 locally	distributed	voltages	are	properly	designed	to	meet	 the	
needs	of	the	loads	while	not	expending	excessive	resources.	

The	efficient	delivery	of	on‐chip	current	is	required	by	every	integrated	circuit.	If	the	load	
varies	 more	 quickly	 than	 what	 the	 nearby	 local	 regulator	 or	 decoupling	 capacitor	 can	
provide	 current,	 the	 transistor	 loads	will	 not	 perform	 as	 required.	 If	 the	 supply	 voltage	
level	provided	to	the	loads	is	not	as	expected	and	needed,	the	active	devices	will	again	not	
perform	as	desired.	The	input	and	output	of	each	regulator	needs	to	be	properly	regulated.	
If	not,	the	power	line	will	oscillate,	affecting	the	circuit	behavior.	Furthermore,	these	power	
lines	are	global	in	nature,	and	noise	can	propagate	through	the	nearby	lines	as	interconnect	

 20

coupling	noise	and/or	through	the	substrate	as	substrate	noise.	Finally,	certain	topologies	
can	be	used	such	as	switching	buck	converters	which	use	a	passive	 inductor‐capacitor	 to	
filter	 out	 the	 voltage	 ripple,	 while	 maintaining	 high	 efficiency	 and	 providing	 significant	
current.	 These	 switching	 converters,	 due	 to	 the	 large	 inductors	 and	 capacitors,	 require	
significant	silicon	area,	greatly	increasing	cost.	

	

	 Milli‐Watts	Designs	
(Emb/Mobile)	

Micro‐Watts	Designs
(Sensors)	

Watts	Designs		
(Servers)	

	Challenges	 Temp./cooling	
Battery	(mobile)	
Reliability	
Parameter	variation	
Power	delivery	

Energy	harvesting
Variability	
Energy	efficiency	
Ruggedness	
Longevity	
	

Temp.	cooling	 	
Reliability	
Power	dissipation	
Parameter	variation	
Power	delivery	issues	
(on/off	chip)	

	Solutions	&	
Needs	

(1)Device/circuit/arch.	
co‐design	

(2)	New	generation	of	
universal	memories	

(3)	Tech.	heterogeneity	
Context‐aware	design	
(4)	Approx.	computing		
(5)	Aging	management	
(6)	Reconfigurable	
circuit/system	design

(7)	Enable	adaptability		

(1)	Device/circuit/arch.	
co‐design	

(2)	New	generation	of	
universal	memories	

(3)	Energy	harvesting	
(4)	Tech.	heterogeneity	
(5)	Context‐aware	design
(6)	Approx.	computing	
(7)	Aging	management	
(8)	Enable	adaptability		

(1)	Device/circuit/arch.	
co‐design	

(2)	New	generation	of	
universal	memories	

(3)	On‐chip	power	
generation,	regulation,	
and	delivery	

(4)	Active	cooling	
(5)	Tech.	heterogeneity	
(6)	Context‐aware	design	
(7)	Approx.	computing	
(8)	Aging	management	
(9)	Enable	adaptability		

	

There	 are	 many	 important	 and	 interesting	 ways	 for	 circuits	 to	 fail	 from	 these	 power	
delivery‐related	mechanisms.	 A	 classic	manifestation	 of	 a	 failure	mechanism	 from	 noise	
produced	by	a	power	delivery	system	is	phase	jitter	in	an	oscillator.	Noise	induced	by	the	
power	network	propagates	into	an	oscillator,	for	example,	a	phase	locked	loop,	causing	the	
oscillating	output	system	to	shift	in	time.	Other	common	examples	of	power	deliver	design	
issues	 causing	 circuit	 failure	 are	 increased	 levels	 of	 delay	 uncertainty	 due	 to	 the	 power	
supply	noise	as	well	as	other,	sometimes	related,	noise	sources	(such	as	interconnect	and	
substrate	 coupling	 noises.)	 Probably,	 the	 most	 common	 example	 of	 a	 power	 delivery	
system	 causing	 a	 system	 to	 fail	 is	 the	 system	not	 providing	 sufficient	 current	within	 the	
proper	 time	 for	 the	 circuit	 to	 behave	 as	 designed.	 Essentially,	 the	 voltage	 is	 lower	 than	
expected	due	 to	 IR	 and	L	di/di	 induced	 transient	 voltage	drops,	which	delays	 the	 circuit	
response	while	adding	to	the	delay	uncertainty.	All	of	these	cases	exemplify	the	importance	

 21

of	 the	 power	 delivery	 system	 on	 system	 functionality	 and	 behavior.	 	 	 There	 are	 many	
examples	of	industrial	circuits	failing	due	to	these	mechanisms.	Power	delivery	remains	as	
one	of	the	most	important	and	omnipresent	issues	within	the	entire	circuit	design	process.	

Reliability	

Traditional	 reliability	 analysis	 for	 gate	 oxide	 TDDB	 uses	 the	 “area‐scaling”	model	 at	 the	
transistor	 level,	 which	 predicts	 circuit	 lifetimes	 under	 TDDB	 stress,	 based	 on	 the	
assumption	that	any	transistor‐level	 failure	causes	a	circuit	 failure.	 	However,	based	on	a	
cross‐layer	 analysis	 at	 device/circuit	 levels,	 it	 has	 been	 observed	 that	 not	 every	 device	
failure	causes	a	circuit	failure,	due	to	inherent	resilience	in	the	circuit	where,	for	example,	
DC	paths	 to	 a	 supply	 node	will	 successfully	 fight	 off	 a	weak	 leakage	path	 to	 ground.	 	An	
improved	model	that	accounts	for	these	effects	across	the	device/circuit	layers	has	shown	
that	the	actual	circuit	lifetime	is	5‐8x	longer	than	the	prediction	from	the	traditional	area‐
scaling	model.	

Cross‐Layer	Research	Needs	

Energy	harvesting	and	energy	recycling		

Energy	 harvested	 from	 the	 environment	 such	 as	 solar,	 pressure,	 vibration	 and	
communication‐cables	 may	 be	 used	 as	 the	 primary	 energy	 source	 for	 ultra‐low	 power	
platforms	including	sensor	nodes.	It	could	be	a	significant	power	source	for	mobile	devices	
and	desktop	computers	to	prolong	battery	life	or	save	energy.		In	terms	of	energy	recycling,	
we	 should	 look	 at	 the	 entire	 system	 since	 the	 primary	 power	 consumers	 could	 be	
communication	components	and	displays.		It	is	important	to	collect	and	reuse	energy	from	
displays	 and	 communication	 components.	 There	 has	 been	 preliminary	 research	 on	
harvesting	 energy	 from	 backlighting	 of	 LED	 displays	 and	 more	 studies	 on	 zero‐power	
switch	for	DC/DC	converters	and	power	amplifiers.	While	novel	and	cost	efficient	circuits	
need	to	be	developed	 for	energy	harvesting	and	recycling,	cross‐layer	optimization	could	
be	 performed	 to	 maximize	 the	 opportunity	 of	 energy	 recycling,	 and	 embedded	 energy	
storage	means	could	be	allocated	to	account	for	temporal	variation	of	power	dissipation.		

Memory,	device,	tech.	heterogeneity	

The	 most	 fundamental	 way	 to	 bring	 about	 a	 revolutionary	 change	 in	 the	 power	
consumption	and	energy	efficiency	roadmap	of	future	(beyond	10	nanometers)	integrated	
circuits	 is	 to	 move	 to	 a	 “non‐thermionic”	 carrier	 injection	 based	 device	 that	 can	
significantly	 lower	 the	 “leakage”	 or	 “wasted	 power”,	 which	 is	 projected	 to	 be	 beyond	
acceptable	 levels	 for	deep	nanoscale	CMOS	devices.	Energy‐efficiency	can	be	achieved	by	
lowering	both	dynamic	and	leakage	power	consumption.		Lower	power	also	leads	to	lower	
operating	 temperatures	of	electronic	devices	resulting	 in	 improved	reliability,	 since	most	
reliability	 mechanisms	 tend	 to	 degrade	 with	 increasing	 temperature.	 However,	 any	
significant	lowering	of	power	using	traditional	techniques	will	become	non‐trivial	beyond	
the	10‐nanometer	technology	node,	although	some	avenues	for	incremental	improvements	
may	exist.	 	This	 is	due	 to	 the	 fact	 that	 in	such	nanoscale	devices,	 the	most	effective	knob	
used	for	lowering	power	dissipation,	namely	the	power	supply	voltage,	cannot	be	scaled	as	
rapidly	 as	 in	 earlier	 technology	 generations	 without	 incurring	 significant	 performance	

 22

penalty	 arising	 from	 the	 fundamental	 inability	 to	 simultaneously	 reduce	 the	 threshold	
voltage.	 	 Simultaneous	 scaling	 of	 threshold	 voltage,	 which	 is	 essential	 for	maintaining	 a	
certain	ON	to	OFF	ratio	of	the	device	currents	(that	is	essential	in	digital	circuits	where	the	
transistors	 are	 used	 as	 switches),	 leads	 to	 a	 substantial	 increase	 in	 the	 subthreshold	
leakage	(OFF	state)	current	(Fig.	1(a)),	owing	to	the	“non‐abrupt”	nature	of	the	switching	
characteristics	 of	 MOSFETs	 (Fig.	 1(b)),	 thereby	 making	 the	 devices	 very	 “energy	
inefficient”.	

	
Fig.	 1.	 	 	 (a)	 CMOS	 technology	 scaling	 trends	 as	 predicted	 by	 ITRS,	 (b)	 Comparison	
between	switching	characteristics	of	an	ideal	switch	and	that	of	solid‐state	devices,	
(c)	Relation	of	subthreshold	swing	to	leakage	current.	

	

The	metric	 that	 is	used	to	capture	the	abruptness	of	 this	switching	behavior	 is	known	as	
the	subthreshold	swing	(inverse	of	the	subthreshold	slope	=	dlogId/	dVgs	in	Fig.	1(b)),	which	
has	a	fundamental	lower	limit	of	2.3kT/q	=	60	mV/decade	for	MOSFETs,	indicating	that	in	
order	 to	 reduce	 the	 source‐to‐drain	 current	 by	 one	 decade,	 one	 must	 reduce	 the	 gate	
voltage	 by	 60	mV.	 This	 value	 is	 essentially	 due	 to	 the	 “thermionic	 emission”	 of	 carriers	
from	the	source	to	the	channel	region	in	MOSFETs.		Practical	nano‐scale	CMOS	devices	have	
even	higher	subthreshold	swings	(80‐90	mV/decade)	(Fig.	1(c).)	Hence,	although	lowering	
of	the	subthreshold	swing	below	60	mV/decade	is	a	non‐trivial	task,	it	is	extremely	critical	
for	achieving	any	significant	improvements	in	energy‐efficiency	of	electronic	products.			

Any	 suitable	 steep‐subthreshold	 slope	 device	will	 dramatically	 reduce	 the	 chip's	 leakage	
power,	 thereby	 making	 them	 more	 power/energy‐efficient,	 and	 lower	 the	 thermal	
problems.	 In	 future,	 steeper	 subthreshold‐slope	 switches	 (such	 as	 tunnel‐FETs	 (TFET),	
NEM‐FETs,	 IMOS,	 etc.	 will	 be	 necessary	 to	 address	 the	 leakage	 problem	 at	 the	 most	
fundamental	level	and	to	allow	ultra	low‐voltage	operation.	Corresponding	circuit/system	
design	challenges	will	also	need	to	be	addressed	for	such	non‐CMOS	devices.	Device‐circuit	
co‐design	will	be	vital.	

For	memory	 technologies,	ultra‐dense,	 low‐power	as	well	as	high	performance	(SRAM	or	
SRAM‐like)	 on‐chip	 memory	 banks	 will	 need	 to	 be	 integrated	 in	 close	 proximity	 to	 the	
logic.	 	Non‐volatile	memory	technologies	including	R‐RAMS,	PC‐RAM,	STT‐RAM	and	so	on	
will	 also	 need	 to	 be	 co‐integrated	 with	 the	 logic	 circuitry.	 	 Integration	 of	
Analog/RF/microwave	 and	 optical	 components	 would	 be	 needed	 to	 realize	 ultimate	

 23

power/energy	optimized	“smart	systems”	in	the	future.		Such	heterogeneous	integration	of	
technologies	would	most	 likely	 be	 realized	 via	 the	 3‐D	 packaging	 or	 3‐D	 IC	 (TSV	 based)	
technology	platforms.	

Device/Circuit/Architecture	Co‐design	

It	 is	 expected	 that	 the	 transistors	 in	 the	 sub‐10nm	would	 primarily	 be	Multi‐gate	 FETs,	
having	 much	 reduced	 short‐channel	 effects	 than	 their	 bulk	 counterparts.	 However,	
effective	 usage	 of	 such	 technologies	 would	 require	 proper	 understanding	 of	 circuit	
behavior	 and	 subsequent	 optimization	 of	 devices	 to	 meet	 the	 performance	 and	 power	
efficiency	 requirements.	 Such	 co‐design,	 for	 example	 in	 FinFETs,	 would	 consider	 fin	
orientation	of	devices,	gate	underlapping,	width	quantization	to	come	up	with	the	best	logic	
and	memory	architecture.	Let	us	consider	an	example:	standard	6‐transistor	SRAMs	have	
conflicting	 requirements	 for	 read	 stability	 and	 writeability.	 This	 becomes	 even	 more	
important	 in	 deeply	 scaled	 technologies	where	 parameter	 variations	 are	 expected	 to	 be	
larger.	 Asymmetric	 devices	 (such	 as	 a	 drain‐underlapped	 FinFET;	 or	 an	 asymmetrically	
source/drain	 doped	 FinFET)	 used	 as	 access	 transistors	 in	 6T	 SRAMs	 can	 lead	 to	
simultaneous	improvement	in	both	readability	and	writeability,	while	having	better	short	
channel	 effect,	 improved	 edge	 direct	 tunneling	 current;	 albeit	 with	 slightly	 increased	
variability.	

The	 need	 for	 low	 voltage	 CMOS	 has	 the	 design	 community	 explore	 various	 circuit	 and	
architecture	options	at	the	near	threshold	region	of	computing	(near	threshold	operation	
being	 one	of	 the	most	 energy	 efficient	 design	points.)	However,	 designing	 circuits	 in	 the	
subthreshold	or	near	threshold	region,	using	standard	“high	performance”	transistors,	may	
lead	 to	 energy	 inefficiency.	 It	 is	 an	 established	 fact	 that	 for	 scaled	 super‐threshold	
transistors	it	is	essential	to	have	halo	and	retrograde	doping	to	suppress	the	short	channel	
effects.	The	main	functions	of	halo	doping	and	retrograde	wells	are	to	reduce	drain	induced	
barrier	lowering	(DIBL),	prevent	body	punch‐through,	and	control	the	threshold	voltage	of	
the	device	independent	of	its	sub‐threshold	slope.	However,	in	sub‐threshold	operation,	it	
is	worthwhile	to	note	that	the	overall	supply	bias	is	small	(in	the	order	of	200mV~400mV.)	
Consequently,	 the	effects	of	DIBL	and	body	punch‐through	are	extremely	 low.	Further,	as	
long	as	we	have	a	fixed	IOFF,	the	steeper	the	sub‐threshold	slope	(S)	is,	the	higher	the	device	
performance	will	be.	Hence,	it	can	be	qualitatively	argued	that	halo	and	retrograde	doping	
profiles	 are	 not	 essential	 for	 sub‐threshold	 device	 design.	 The	 absence	 of	 the	 halo	 and	
retrograde	doping	has	the	following	implications:	

(a) A	simplified	process	technology	in	terms	of	process	steps	and	cost,		
(b) A	significant	reduction	of	junction	capacitances,	resulting	in	faster	switching	speed	and	

lower	energy	consumption.	
It	should,	however,	be	noted	that	the	doping	profile	in	the	optimized	devices	should	have	a	
high‐to‐low	doping	profile.	It	is	thus	necessary	to	have	a	low	doping	level	in	the	bulk	of	the	
device	to	achieve	the	following:	

(a) Reduce	the	capacitance	of	the	bottom	junction,	
(b) Reduce	substrate	noise	effects	and	parasitic	latch‐up	problems.	

 24

Initial	 results	of	analysis	suggest	more	 than	50%	improvement	 in	power	efficiency	when	
device/circuit	co‐design	is	considered	for	sub‐Vt	operations.	

Research	on	non‐Si	devices	has	also	started	 in	earnest	 in	quest	 for	a	better	switch	or	 for	
highly	 dense	 memory	 elements.	 Such	 devices/technologies	 include	 carbon	 electronics,	
tunnel	FETs,	spin	transistors	and	spin	memories,	etc.		It	is	expected	that	proper	co‐design	
and	exploration	of	novel	circuits	suitable	for	such	new	devices	are	required	to	determine	
how	they	replace	or	serve	as	add‐on	to	CMOS	technology.	

Active	cooling	

High	 performance	 processors	 of	 the	 future	 are	 expected	 to	 have	 hot	 spots,	 exhibiting	
power	 density	 close	 to	 400W/cm2.	 Effective	 cooling	 of	 such	 hot	 spots	 would	 require	
innovations	 in	 thermoelectric	 devices	 and	 materials.	 Such	 devices	 can	 also	 be	 used	 to	
convert	 the	 heat	 flux	 from	a	 hot	 spot	 into	 electrical	 energy	 that	 could	 be	 used	 to	 power	
peripheral	circuits.	The	thin‐film	thermoelectric	devices	are	capable	of	handling	heat	flux	in	
the	 order	 of	 100‐300	 W/cm2	 and	 are	 suitable	 for	 on‐chip	 energy	 scavenging/cooling	
applications.	These	materials	 are	usually	 super‐lattices	of	Bi2Te3	and	Sb2Te3	 reaching	a	
ZT	of	2.	Such	devices	when	embedded	in	a	chip‐level	package	could	lead	to	heat	recovery	
for	energy	efficient	computing	as	well	as	possible	application	for	hot‐spot	cooling	 in	high	
performance	processors.	An	appropriate	simulation	framework	needs	to	be	developed	that	
can	 accurately	 estimate	 the	 scavenging	 performance	 of	 these	 embedded	 thermoelectric	
devices,	including	parasitic	losses	due	to	the	interfaces.	

Aging	management	

Reliability	has	emerged	as	a	major	challenge	in	future	technologies,	and	it	is	projected	that	
its	impact	will	become	even	more	serious	in	the	future.	Aging	variations,	caused	by	stresses	
experienced	 by	 a	 circuit,	 can	 be	manifested	 as	 (a)	 parametric	 failures,	 corresponding	 to	
shifts	 in	 circuit	 behavior	 over	 time,	 or	 (b)	 catastrophic	 failures,	which	 cause	 a	 circuit	 to	
become	nonfunctional.	

For	CMOS	circuits,	there	are	several	important	aging	mechanisms	that	must	be	taken	into	
consideration,	 such	 as	 bias	 temperature	 instability	 (BTI),	 time‐dependent	 dielectric	
breakdown	 (TDDB)	 in	 the	 gate	 oxide	 and	 in	 interlayer	 dielectrics,	 hot	 carrier	 injection	
(HCI),	 electro‐migration	 (EM),	 and	 thermo‐mechanical	 stress.	 These	 variations	 can	 be	
acutely	 sensitive	 to	 factors	 such	 as	 the	 supply	 voltage	 level,	 changes	 in	 environmental	
parameters	 (notably	 temperature),	 and	 process	 parameter	 variations.	 Given	 the	
relationships	 between	 power,	 temperature,	 supply	 voltage	 changes,	 and	 reliability,	 it	 is	
essential	 to	 treat	 reliability	 as	 a	 “first‐class	 citizen”	 in	 future	 designs.	 Along	with	 power	
management	 (which	 controls	 the	 total	power	 to	a	design)	and	 temperature	management	
(which	controls	the	thermal	hot	spots),	aging	management	must	be	a	crucial	component	of	
future	designs.			

Aging	management	primarily	entails	two	aspects:	

(a)	Developing	models	of	appropriate	complexity	and	accuracy	at	each	layer	and	enabling	
easy	cross‐layer	information	transfer	that	enables	aging	analysis	at	all	levels.	

 25

(b)	Determining	strategies	for	controlling	the	amount	by	which	a	circuit	may	age	without	
causing	 circuit	 failures,	 while	 ensuring	 that	 system‐level	 performance	 metrics	 are	
optimized.	 	Such	strategies	 include,	but	are	not	restricted	 to,	pre‐silicon	methods	such	as	
the	 use	 of	 redundancy	 or	 guardbands	 to	 account	 for	 temporal	 performance	degradation,	
and	post‐silicon	methods	such	as	real‐time	sensing	and	adaptation.	

The	 precise	 aging	 mechanisms	 associated	 with	 post‐CMOS	 technologies	 are	 likely	 to	
become	 more	 apparent	 as	 the	 technologies	 mature,	 but	 it	 seems	 likely	 that	 any	 new	
technology	will	also	experience	failures	 in	time,	and	a	research	agenda	similar	to	that	 for	
CMOS	technologies	may	be	extrapolated.		

There	 are	numerous	 opportunities	 for	 cross‐layer	 optimizations	 to	manage	 circuit	 aging.	
The	most	effective	optimizations	can	be	made	at	higher	levels—microarchitecture,	system,	
and	applications.	It	 is	vital	to	provide	appropriate	“hooks”	to	enable	information	transfer,	
from	the	point	of	view	of	modeling,	real‐time	sensing,	and	real‐time	adaptivity,	that	enables	
these	cross	layer	optimizations	and	implements	them	at	the	circuit	level.		This	information	
transfer	will	enable	capabilities	at	various	levels—e.g.	activating/deactivating	various	units	
and	controlling	the	 level	of	permissible	errors	at	the	system/application	 level.	 	The	 latter	
approach	may	leverage	redundancy/speculation,	tolerating	low‐level	errors	that	are	never	
expressed	at	the	application	level,	or	enabling	energy‐efficient	approximate	computing,	as	
outlined	in	a	next	section.	

On‐chip	power	delivery/regulation	

The	 ability	 to	 convert	 and	 deliver	 power	 to	 on‐chip	 devices	 in	 an	 efficient	manner	 is	 an	
integral	part	of	system	power/thermal	management.	Power	delivery,	regulation	and	power	
management	 circuits	 provide	 a	 foundation	 for	 delegating	 dynamic	 power/thermal	
management	directives	and	must	be	optimized	with	cross‐layer	considerations.	

There	has	been	an	increasing	awareness	that	the	entire	power	conversion,	regulation	and	
distribution	chain	 shall	be	 considered	as	a	 complete	electrical	 sub‐system	and	optimized	
for	 targeted	 applications	 (e.g.	 mobile	 vs.	 desktop.)	 	 At	 the	 circuit	 level,	 the	 power	
distribution	and	DC‐DC	converters	must	be	optimized	to	optimally	tradeoff	between	power	
efficiency,	 supply	 noise,	 stability	 and	 transient	 response	 time.	 Switching	 and	 switched‐
capacitor	 DC‐DC	 convertors,	 linear	 voltage	 regulators,	 power	 grids	 and	 decoupling	
capacitors	 and	 their	 proper	 composition	 shall	 be	 considered	 as	 key	 components	 of	 the	
power	 delivery	 network.	 New	 materials	 (e.g.	 magnetic	 materials	 for	 low‐loss	 on‐chip	
inductors)	and	process	technologies	(e.g.	deep‐trench	capacitors)	can	significantly	 impact	
key	characteristics	of	on‐chip	voltage	regulators,	and	hence	must	be	considered	as	part	of	
the	optimization	process.	In	addition,	limits	on	the	amount	of	delivered	power	and	passive	
decoupling	must	be	considered	during	the	circuit‐level	design	optimization.			

Other	 cross‐layer	 challenges	 and	 opportunities	 exist	 due	 to	 the	 fact	 that	 on‐chip	 power	
delivery	 and	 regulation	 shall	 be	 optimized	 synergistically	 with	 high‐level	 power	
management	 schemes	 to	 maximize	 overall	 system	 performance.	 Supply	 noise	 shall	 be	
controlled	 through	 circuit	 design	with	 a	 proper	 understanding	 of	workloads	 for	 a	 given	
implementation	platform	(e.g.	servers	vs.	embedded	systems.)	Power	management	policies	
interact	with	power	delivery	differently	and	have	different	response	time	requirements	in	
order	to	manage	the	chip	power	at	an	optimal	temporal	granularity.	The	achievable	system	

 26

power	 efficiency	 is	 a	 joint	 function	 of	 the	 power	 loss	 in	 power	 delivery	 and	 the	 energy	
saving	 achieved	 through	 dynamic	 power	 management	 that	 runs	 on	 top	 of	 it.	 	 Co‐
optimization	of	the	two	is	the	key	to	optimize	the	interactions	between	the	power	delivery	
and	 dynamic	 power	 management.	 Key	 circuit	 and	 policy	 level	 parameters	 need	 to	 be	
determined	 jointly	 and	optimized	with	workload	 awareness.	 	 	 	 	 Cross‐layer	 optimization	
also	need	be	targeted	to	provide	adaptability	to	the	workload,	device	variability,	and	aging	
phenomena.		

Enabling	adaptability	by	predicting	the	system	workload	

Digital	 and	analog	 circuits	may	be	designed	with	different	degrees	of	 freedom	 to	 change	
circuit	 behavior.	 For	 example,	 the	 voltage	of	 the	 circuit	 can	be	 controlled	dynamically	 to	
enable	 operation	 at	 higher	 or	 lower	 frequencies	 as	 in	 dynamic	 voltage	 and	 frequency	
scaling	 (DVFS)	 techniques.	Although	DVFS	has	been	discussed	 in	 the	 literature	 for	a	 long	
time,	some	challenges	are	still	stalling	broader	adaption	of	DVFS	in	the	industry.	To	date,	
the	ability	to	predict	computational	workload	at	the	system	level	is	a	challenge.	Therefore,	
DVFS	 is	not	being	used	 in	a	 truly	dynamic	manner	as	 it	 implies	 in	naming.	Consequently,	
power	reduction	capabilities	at	the	circuit	level	are	not	being	completely	utilized	due	to	the	
lack	of	workload	prediction	schemes	at	the	system	level.	

Approximate	computing	and	designing	with	unreliable	components	

An	efficient	way	to	improve	computation	power	is	to	relinquish	the	requirement	for	perfect	
correctness	 of	 every	 operation.	 That	 may	 come	 in	 two	 forms:	 intentional	 trading	 of	
achievable	 computation	 quality	 for	 energy,	 and	 relaxation	 of	 protection	 guarantees	 for	
certain	types	of	transient/intermittent	errors.	

Synthesizing	 circuits	 with	 different	 quality‐energy	 efficiency	 values	 via	 voltage	 scaling,	
gate‐level,	 or	 algorithmic	 transformations	 can	 yield	 significant	 power	 savings.	 This	 is	 a	
promising	 possibility	 for	 systems	 that	 can	 tolerate	 imperfect	 results,	 such	 as	 signal	
processing,	data	mining,	and	learning.	Cross‐layer	approaches	are	essential	in	this	domain:	
one	needs	to	know	where	–	from	the	algorithmic	perspective	–	approximate	computation	is	
permissible.	 For	 example,	 when	 implementing	 control	 logic	 of	 a	 finite	 state	machine	 no	
errors	 can	 be	 permitted.	 At	 the	 same	 time,	 a	 block	 performing	 an	 image	 compression	
algorithm,	 such	 as	 IDCT,	 can	 permit	 errors.	 Thus,	 in	 order	 to	 enable	 such	 importance‐
driven	 or	 significance‐driven	 computation,	 hooks	 in	 software	must	 be	made	 available	 to	
identify	operations	admitting	imprecise/approximate	evaluation.	

It	may	be	possible	 to	reduce	energy	by	discarding	algorithm	steps	 that	contribute	 less	 to	
the	final	quality	of	results.	Alternatively,	adaptively	setting	the	precision	of	the	arithmetic	
unit	 output	 may	 be	 used	 to	 save	 energy.	 Joint	 use	 of	 error‐prone	 and	 simpler	 error‐
correcting	 blocks	 can	 reduce	 the	 overall	 power	dissipation.	Algorithmic	 transformations,	
such	 as	 identifying	 and	 skipping	 the	 unnecessary	 computations,	 can	 also	 be	 effective.	
Demonstrations	of	such	measures	on	signal‐processing	circuits,	including	IDCT/DCT	blocks	
have	 been	 made.	 More	 research	 at	 the	 level	 of	 RTL/logic	 optimization	 is	 needed	 to	
generalize	such	constructions.	

A	 related	 principle	 is	 that	 when	 certain	 blocks	 can	 tolerate	 errors	 due	 to	 their	 relative	
significance,	 less	energy	must	be	dissipated	for	soft	error	protection.	Such	soft	errors	are	

 27

transient	 in	 nature	 and	may	be	due	 to	 power	 supply	 noise,	 coupling	noise,	 and/or	 high‐
energy	alpha	particle	strikes.	

Power	estimation	and	modeling	

Cross‐layer	 power	 optimization	 and	 management	 depends	 on	 the	 availability	 of	 robust	
power	estimation	and	modeling	capabilities.	In	the	context	of	chip	design,	these	capabilities	
must	 span	 the	 levels	 of	 abstraction	 from	 devices	 and	 technology	 to	 circuits	 and	
architectures,	as	well	as	the	variety	of	heterogeneous	components	and	technologies.	At	the	
level	of	circuits	and	devices,	power	models	are	available	for	CMOS,	but	must	be	extended	
for	emerging	beyond‐CMOS	technologies.	The	bigger	need,	however,	in	both	today's	CMOS	
and	 future	 beyond‐CMOS	 technology,	 is	 for	 true	 architectural	 level	 power	models.	Many	
attempts	have	been	made,	but	the	problem	remains	open	and	must	be	solved	 in	order	to	
allow	 design	 of	 the	 runtime	 environment	 and	 software	 level	 power	 management.	 The	
modeling	 difficulties	 relate	 both	 to	 the	 difficulties	 in	 comprehending	 the	 circuit	 timing	
context	and	the	wide	range	of	possible	implementations,	but	they	also	relate	to	the	fact	that	
there	are	no	good	abstractions	 today	 for	expressing	 the	power	demands	at	high	 levels	of	
abstraction	 that	 are	 usable	 in	 current	 design	 methodology.	 These	 problems	 must	 be	
overcome	 so	 as	 to	 enable	 optimization	 of	 power	 across	 multiple	 layers	 of	 the	 design	
hierarchy.	

	

 28

Area 2: Circuits, Microarchitecture, and Beyond

	

Area	Leader:		Jason	Cong		

Co‐Editor:	Lin	Zhong	 	

Other	Area	Members:	 Christopher	Batten,	Naehyuck	Chang,	 Sandeep	Gupta,	Engin	 Ipek,	
Bill	 Joyner,	 Eren	 Kursun,	 Renu	 Mehra,	 Vijaykrishnan	 Narayanan,	 Qinru	 Qiu,	 Karthick	
Rajamani,	Karu	Sankaralingam,	Mircea	Stan	

	

In	this	section	we	first	review	the	progress	and	success	in	the	circuit	and	microarchitecture	
areas	 for	 power	 optimization,	 and	 also	 lessons	 learned	 by	 the	 research	 community	 and	
industry	in	exploring	various	directions	and	techniques	for	power	optimization.		Then	we	
discuss	 the	 challenges	 ahead	 and	 opportunities	 for	 cross‐layer	 power	 optimization,	with	
emphasis	on	heterogeneity,	 specialization,	 standardization,	memory	power	minimization,	
cross‐layer	co‐optimization,	platform‐specific	optimization,	and	exploration	of	bio‐inspired	
systems.	

Success/Failure Stories

Impressive	progress	has	been	made	in	the	past	two	decades	on	power	optimization,	which	
has	 made	 it	 possible	 to	 have	 billion‐transistor‐cellphones	 operated	 by	 battery	 power	
without	recharging	for	more	than	a	hundred	hours.		We	think	it	is	worthwhile	to	review	the	
past	successes	in	power	optimization,	especially	at	the	circuit	and	microarchitecture	levels,	
before	we	map	out	new	research	directions.	

Success	Stories	

We	think	that	the	following	achievements	have	been	instrumental	for	power	management	
and	optimization	in	the	past	two	decades.	

Success	in	level	of	abstraction	for	power	modeling	
Industry	 has	 partially	 succeeded	 in	 providing	 various	 levels	 of	 abstraction	 for	 power	
modeling.	 	 In	 particular,	 very	 accurate	 gate‐level	 power	 models	 for	 both	 dynamic	 and	
leakage	power	dissipations	are	available	from	silicon	foundries	and	are	integrated	into	the	
commercial	 tool	 flow.	Characterizations	are	available	at	multiple	corners	and	at	different	
supply	 voltages.	 This	 allows	 tools	 to	 make	 informed	 optimization	 decisions	 that	 cover	
different	corners,	voltages,	and	different	conditions	on	the	chip.	

Standardization		
Standardization	 is	 critical	 for	 cross‐layer	power	optimization.	The	Unified	Power	Format	
(UPF)	 and	Advanced	Configuration	 and	Power	 Interface	 (ACPI)	 are	 good	 examples.	 	 UPF	
enables	users	to	bridge	the	gap	between	the	system	level	and	the	microarchitecture	level.	It	
allows	users	to	specify	power	domains	(at	a	fairly	fine‐grained	level),	 the	power	network	

 29

including	 power	 supplies	 and	 switches,	 characteristics	 of	 the	 power	 domains	 (which	
elements	need	to	be	state‐retained	during	power	gating),	and	the	interaction	between	the	
power	 domains	 (including	 isolation	 and	 level	 shifting	 interfaces.)	 In	 addition,	 the	 state	
combinations	 between	 power	 domains	 are	 defined.	 This	 allows	 the	 synthesis	 tools	 to	
implement	 hardware	 that	 respects	 the	 power	 intent	 of	 the	 user.	 System‐level	 domain	
requirements	 that	 are	 captured	 in	 ad	 hoc	 formats,	 like	 Excel	 spreadsheets,	 can	 now	 be	
converted	into	a	design	specification	at	the	next	lower	level	of	abstraction.	

The	 Advanced	 Configuration	 and	 Power	 Interface	 (ACPI,	 in	 use	 on	 x86	 systems)	 is	 the	
foundation	 for	DVFS	 and	 processor	 idle	 state	management	 on	 x86	 systems.	 ACPI	 helped	
bring	 together	 advancements	 at	 the	 operating	 system	 level	 (and	 by	 extension,	 at	 the	
application‐level),	processors	(micro‐architecture,	circuit	designs),	and	devices	layers	with	
firmware	support.	An	aspect	of	this	related	to	processor	micro‐architecture	is	the	support	
for	pStates	 (voltage‐frequency	 control	 abstraction)	 and	 cStates	 (core,	 thread,	 cache,	 chip	
idle	mode	control	 abstraction.)	OS	 (or	 suitably	empowered	applications,	or	hypervisors),	
directly	 or	 indirectly	 through	 firmware,	 direct	 power	 management	 actions	 for	 the	
processor,	memory	 system,	 and	 I/O	devices	where	 supported.	 Power‐aware	applications	
and	runtime	systems	can	also	leverage	the	capabilities	through	extensions	provided	by	the	
OS	 for	 tapping	 the	mechanisms.	While	 it	 served	 the	needs	of	 technologies	 to	date,	newer	
approaches	(such	as	supply	voltage	level	optimizations	that	are	independent	of	operating	
frequency	control)	may	not	 fit	 the	abstractions	 laid	out	 in	 the	ACPI.	Extensions	or	newer	
standardization	 frameworks	 might	 be	 needed	 to	 support	 the	 new	 power	 optimization	
capabilities.	

Cross‐layer	optimization	in	mobile	systems	
The	initial	success	of	cross‐layer	power	management	techniques	has	provided	a	significant	
improvement	 in	 the	 overall	 efficiency	 of	 mobile	 systems.	 	One	 good	 example	 is	 the	
advancements	made	 in	the	mobile	space.	We	now	have	the	equivalent	compute	power	at	
our	disposal	that	a	supercomputer	had	a	couple	of	decades	ago,	or	a	desktop	computer	had	
a	decade	ago.	But	today	that	compute	power	is	battery‐powered	and	in	the	form	factor	of	a	
cell	phone.	At	the	same	time,	in	the	mobile	platform	space	there	are	many	variations,	with	
some	products	having	better	within‐layer	figures	of	merit	(e.g.	highest	performance,	largest	
screen,	highest	power	efficiency,	best	radio,	etc.),	yet	the	overall	most	successful	solution	
(iPhone)	 is	 one	 that	 uses	 a	 holistic	 design	 approach	 with	 tight	 vertical	 integration	 and	
cross‐layer	optimization.	The	 iPhone	 trades	 features	 for	user	 friendliness.	While	 it	 is	not	
the	best	on	any	individual	metric,	it	excels	in	usability.		

Judiciously	 exposing	 microarchitecture	 resources	 to	 the	 compiler	 can	 often	 result	 in	
system‐level	 energy	 optimization	 opportunities	 that	 take	 advantage	 of	 both	 the	 runtime	
information	 possessed	 by	 the	 hardware	 and	 the	 global	 information	 possessed	 by	 the	
compiler.	 Scratchpad	memory	 is	 a	 successful	 example	 of	 a	 hardware	 feature	 where	 the	
compiler’s	knowledge	of	future	memory	access	patterns	can	be	leveraged	to	exploit	locality	
with	 lower	 energy	 than	 a	 hardware‐managed	 cache.	 Loop	 stream	 detectors	 and	 buffers,	
which	 detect	 loops	 in	 hardware	 and	 buffer	 the	 decoded	 instruction	 stream,	 are	 another	
example	 where	 cross‐layer	 optimization	 is	 useful:	 if	 the	 compiler	 is	 aware	 of	 the	 loop	
stream	buffer,	 it	 can	adjust	 the	number	of	 times	a	 loop	 is	unrolled,	making	 sure	 that	 the	
number	of	instructions	within	the	loop	body	is	smaller	than	the	buffer’s	capacity.		

 30

Cross‐layer	power	optimization	in	server	designs	
Recent	 microprocessor	 chips	 (e.g.	 IBM’s	 Power7	 processor	 chip)	 illustrate	 a	 full‐stack	
example	 of	 the	 corresponding	 improvement	 that	 can	 be	 achieved	 through	 cross‐layer	
power	 optimization.	 	By	 leveraging	 deep	 trench	 capacitors	 in	 45nm	 SOI	 processes,	 the	
Power7	processor	incorporates	an	eDRAM‐based	L3	cache	design	to	realize	a	highly	energy	
efficient	cache	hierarchy.	This	has	resulted	in	a	5x	lower	standby	power	compared	to	the	
SRAM‐based	L3	cache	designs.		A	range	of	processor	idle/sleep	modes	was	employed	in	the	
design	 for	 maximum	 energy	 efficiency	 in	 the	 8‐core/SMT4	 design.	 Per‐core	 dynamic	
frequency	 scaling	 capabilities,	 along	 with	 global	 voltage	 scaling,	 provide	 knobs	 that	 are	
tightly	integrated	with	a	collection	of	hardware	sensors	and	with	the	power	management	
firmware.		

By	leveraging	on‐chip	hardware	counters,	unit‐level	temperature	sensors,	and	critical	path	
monitors,	chip	power	and	performance	metrics	are	monitored	and	managed	at	run	time	for	
maximum	performance	and	energy	efficiency.	Another	example	of	 full‐stack	management	
is	 shown	 between	 the	 packaging	 and	 architecture‐level	 designs	 in	 the	 P7	 chip.	 On‐chip	
digital	 thermal	 sensor	 readings	 are	 dynamically	 monitored,	 and	 the	 measurements	 are	
used	for	dynamic	fan	speed	control;	this	results	in	an	additional	21%	power	savings.	

In	 recent	 years	 IBM	 also	 demonstrated	 hardware	 characterization‐based	 resource	 and	
power	 management	 for	 improved	 power	 efficiency.	 By	 passing	 core‐to‐core	 variation	
characteristics	to	the	system	hardware	and	software	management,	on‐chip	controllers	can	
intelligently	 select	 the	 voltage	 and	 frequency	 levels	 (as	 well	 as	 customizing	 the	 power	
management	techniques.)	

Lessons	Learned	

In	 the	process	of	 searching	 for	efficient	power	optimization	 techniques,	 the	research	and	
industry	communities	learned	a	number	of	lessons	from	the	unsuccessful	attempts.		We	list	
several	in	this	section,	since	we	think	it	is	important	to	learn	from	these	experiences.	

Overexposure	of	lower	layer	
When	microarchitecture	exposes	hardware	 features	 to	 software	 so	 that	 the	software	 can	
leverage	 them	 for	 efficiency,	 it	 may	 make	 the	 interface	 (i.e.	 ISA)	 fat,	 leading	 to	 innate	
inefficiency.	Although	VLIW	remains	the	dominant	micro‐architectural	paradigm	in	today’s	
DSP	processors	due	to	its	potential	for	extracting	high	levels	of	instruction	level	parallelism	
(ILP)	 with	 low	 overhead,	 the	 application	 of	 such	 a	 technique	 in	 the	 general‐purpose	
domain	has	been	tried	and	largely	rejected	by	the	market.	The	problem	stemmed	partially	
from	an	overly	ambitious	cross‐layer	development	agenda	that	relied	heavily	on	compiler	
support	to	extract	ILP	in	general‐purpose	codes.	Also,	the	extra	hardware	support	that	was	
added	 to	 EPIC	 ISAs	 to	 ease	 the	 compiler’s	 job	 has,	 in	 turn,	 imposed	 additional	 energy	
overheads.		

Overuse	of	Top‐down	methodology	
While	 attractive	 in	 shortening	 design	 cycles,	 top‐down	 design	 methodologies	 require	
caution	 and	 proper	 cross‐layer	 hooks	 to	 keep	 inefficiencies	 under	 control.	 In	 processor	
design,	except	for	some	embedded	small	soft	core	examples,	higher	performance	processor	

 31

solutions	 require	 different	 levels	 of	 customization—all	 the	way	 from	pure	 hard	 cores	 to	
more	intermediate	firm	cores.	The	main	reason	is	that	aggressive	power	and	performance	
metrics	need	either	accurate	cross‐layer	hooks,	or	extensive	low‐level	optimization.		

Binary	translation	
Binary	 translation	 for	 energy	 efficiency	 has	 been	 tested	 and	 tried	 as	 an	 effective	way	 of	
improving	the	efficiency	of	x86	binaries.	The	technique	did	not	meet	with	wide	success	due	
to	the	overhead	of	binary	translation	hardware	and	lack	of	ways	to	accurately	evaluate	the	
impact	of	high‐level	optimization.	

Transmeta	is	an	example	in	our	discussion	of	"binary	translation	for	energy	efficiency."	The	
idea	 that	 one	 can	 use	 a	 very	 simple	 core	 design	 for	 energy	 efficiency	 and	 do	 binary	
translation	to	enable	execution	of	legacy	software	just	never	seemed	to	really	pan	out.	The	
energy	 overhead	of	 binary	 translation	 always	 seemed	 to	 outweigh	 the	 benefit	 of	 using	 a	
simpler	core	design.	We	believe	that	the	big	low‐power	win	for	Transmeta	comes	from	its	
aggressive	use	of	DVFS.		

Misuse	of	power	gating	in	overly	fine‐grain	power	management	
Circuit‐level	 optimizations	 such	 as	 power	 gating	 can	 be	managed	 potentially	 at	 different	
levels.	But	they	also	often	need	information	from	multiple	levels.	Depending	on	which	level	
the	decisions	are	taken,	appropriate	input	must	be	made	available	from	other	levels;	e.g.	if	
fine‐grain	 power	 gating	 control	 is	 to	 be	 implemented	 at	 the	 circuit/micro‐architectural	
level,	the	right	abstractions	from	software	to	the	hardware	logic	might	be	needed	to	initiate	
power	 gating	 at	 the	 right	 moment	 to	 make	 it	 somewhat	 proactive	 and	 not	 just	 purely	
reactive.	 Conversely	 if	 coarse‐grain	 power	 gating	 is	 to	 be	 managed	 from	 the	 software	
layers,	they	need	to	be	adequately	informed	of	the	delays	and	energy	overheads	of	invoking	
power	 gating	 levels	 at	 the	 lower	 layers.	 Evaluation	 infrastructure	 (simulators)	 should	
incorporate	 delays,	 and	 overheads	 at	 each	 of	 the	 concerned	 levels	 (circuit,	
microarchitecture,	 software)	 to	 accurately	 capture	 the	 benefit/cost	 of	 the	 power	 gating	
technology.		

More	generally,	research	studies	sometimes	ignore	the	modeling	of	the	impact	at	each	layer	
or	 the	 need	 for	 the	 right	 communication	 interfaces.	 This	 results	 in	 incorrect	
recommendations	on	 the	value	and/or	 implementation	approach	needed	 for	a	 successful	
incorporation	 of	 the	 technologies.	 Similar	 observations	 can	 be	 made	 regarding	 other	
circuit‐level	optimizations	such	as	the	employment	of	multi‐VDD	capabilities	for	combating	
variation	issues	with	technology	scaling/low‐voltage	operation.	

Moving	Away	From	Overclocking	and	performance‐driven	design		
In	 the	 2003‐2004	 time	 frame,	 there	 were	 multiple	 reports	 on	 high	 temperatures	
(operations	 close	 to	 thermal	 limits)	 and	 performance	 degradation	 due	 to	 throttling	 in	 a	
microprocessor	 design.	 Significant	 changes	 were	 made	 in	 architectures	 to	 address	 the	
power	efficiency	and	power	density	challenges	(clean	slate	approach.)	This	also	marked	an	
important	transition	in	the	industry—that	is,	moving	away	from	overclocking	and	moving	
more	 towards	 power‐aware	 design.	 The	 positive	 outcome	 was	 the	 recognition	 of	
power/power‐density	 aware	 design,	 which	 also	 resulted	 in	 a	 wave	 of	 research	 on	

 32

temperature‐aware	 design/temperature‐sensing	 infrastructure	 that	 eventually	 improved	
system	power	efficiency	further.		

Coupling	 microarchitecture	 innovation	 with	 programming	 models	 and	 compiler	
support		
Some	 success	 has	 been	 demonstrated	 in	 coupling	 architecture	 and	 microarchitecture	
development	 together	with	programming	models	and	compilation	 tools	with	good	cross‐
layer	coordination.	 		One	example	 is	 recent	GPU	products,	which	were	originally	 targeted	
for	 the	 computer	 graphics	 domain.	 	With	 the	 availability	 of	 CUDA	 and	 OpenCL	
programming	models	and	associated	compilation	tools,	as	well	as	the	efforts	by	Nvidia	and	
other	companies	to	build	a	user	community	around	such	programming	models,	the	use	of	
GPUs	has	spread	into	many	other	domains.	Many	of	the	top‐100	supercomputers	use	GPUs	
for	high‐performance	computation.	 In	comparison,	 the	Cell	processor	 is	 less	successful	 in	
terms	of	being	accepted	by	other	applications	beyond	 its	 initial	 intended	use	(support	of	
computer	 gaming);	 this	 is	 due	 to	 the	 lack	 of	 efficient	 programming	 models	 and	 a	 well‐
trained	user	community.	

Cross‐layer	Power	Optimization	Challenges	

In	 order	 to	 further	 cross‐layer	 power	 optimization	 at	 the	 circuit/microarchitecture	 level	
and	beyond,	we	need	to	overcome	a	number	of	challenges.	Here,	we	highlight	a	few	major	
challenges.	

Models	and	Tools	for	Effective	Energy‐Based	Design‐Space	Exploration		

One	of	the	biggest	challenges	in	evaluating	the	energy	efficiency	of	system	research	ideas	is	
the	 lack	 of	 a	 fully	 integrated	methodology	 to	 enable	 accurate	 energy‐based	design‐space	
exploration	at	various	 levels	of	abstraction.	Traditionally,	 researchers	working	on	micro‐
architectural	 techniques	 use	 one	 of	 two	 approaches,	 depending	 on	 whether	 they	 are	
approaching	the	problem	from	an	architecture	perspective	or	a	VLSI	perspective.	From	the	
architecture	 perspective,	 one	 augments	 a	 standard	 cycle‐level	 simulator	with	 first‐order	
event‐based	energy	estimates	and	then	possibly	generalizes	 these	estimates	 into	an	even	
more	abstract	system‐level	model.	From	the	VLSI	perspective,	one	uses	either	RTL	or	gate‐
level	bit‐accurate	energy	estimates	based	on	abstracting	detailed	circuit‐level	models.	

There	are	two	Challenges	to	be	addressed	to	support	effective	energy‐based	design	space	
exploration:	 (1)	 Development	 of	 first‐order,	 event‐based	 energy	 modeling	 tools	 in	
evaluating	revolutionary	architectures	that	differ	significantly	from	the	architectures	used	
to	 validate	 the	 original	 models;	 and	 (2)	 Tight	 (and	 preferably	 automated)	 vertical	
integration	 of	 the	 higher‐level,	 first‐order,	 event‐based	 energy	 modeling	 tools	 with	 the	
lower‐level,	gate‐level,	bit‐accurate	energy	modeling	tools.	

Modeling	revolutionary	architectures	
There	 are	 many	 interesting	 research	 directions	 to	 take	 when	 exploring	 revolutionary	
architectures;	 these	 might	 include:	 custom	 accelerators,	 reconfigurable	 logic,	 near	
threshold	operation,	and	emerging	storage/interconnect	 technologies.	 It	 is	not	 clear	how	
well	 traditional	 first‐order	 event‐based	 energy	 modeling	 tools	 capture	 the	 energy	

 33

implications	 of	 these	 revolutionary	 architectures,	 since	 these	 traditional	 tools	 were	
validated	 against	 traditional	 architectures.	 Revolutionary	 architectures	 might	 include	
components	 not	 modeled	 in	 traditional	 modeling	 tools	 (e.g.	 reconfigurable	 logic,	
application‐specific	functional	units,	advanced	vector	units),	and	these	architectures	might	
not	adhere	to	traditional	assumptions	about	which	portions	of	the	system	have	negligible	
energy	consumption	(e.g.	unstructured	control	logic,	local/semi‐global	wires.)	

Vertical	integration	
There	is	no	well‐established	and	integrated	methodology	for	connecting	the	gap	between	
first‐order	 event‐based	 energy	 models	 and	 gate‐level	 bit‐accurate	 energy	 models.	
Currently,	 researchers	 must	 either	 "abuse"	 the	 available	 first‐order	 event‐based	 energy	
modeling	tools,	or	manually	write	and	characterize	a	specific	RTL	implementation.	Ideally,	
it	would	be	possible	 to	automatically	generate	 first‐order	event‐based	energy	models	(or	
even	higher	system‐level	models)	 from	gate‐level	bit‐accurate	energy	estimates	based	on	
the	RTL	of	new	architectures.	

Efficient	 Simulation	 and	 Architecture	 Exploration	 Support	 for	 Heterogeneous	
Architectures	and	Emerging	Technologies	

Architecture	simulation	research	has	a	long	history,	but	by	no	means	is	a	solved	problem.	
	Cycle‐accurate	simulation	of	multi‐core	processors	takes	days	to	weeks,	as	the	number	of	
cores	increases.		The	previous	simulation	speedup	techniques—such	as	statistical	sampling	
and	hardware	emulation—while	very	successful	 for	single‐core	processors,	are	not	easily	
extended	 to	 multi‐core,	 parallel	 simulation	 due	 to	 the	 complications	 of	 inter‐core	
communication,	synchronization,	and	modeling	of	shared	resources	(such	as	L2	cache	and	
network‐on‐chips.)	 	Moreover,	 the	 introduction	 of	 heterogeneous	 components,	 such	 as	
small	vs.	big	cores	and	accelerators,	further	complicates	the	simulation	requirements	

The	opportunity	for	cross‐layer	design	and	optimization,	for	example,	considering	the	use	
of	 sub‐threshold	 circuits,	 bio‐inspired	 components,	will	 definitely	 further	 complicate	 the	
simulation	models.		In	particular,	technology	scaling	and	related	variability	induced	issues,	
as	well	 as	 low‐voltage	solutions	 for	energy	efficiency,	will	need	an	 increasing	cross‐layer	
optimization	and	management	focus	jointly	for	power	and	reliability	 in	the	coming	years.	
Incorporation	of	control	systems	spanning	circuit,	micro‐architecture	and	software	layers	
would	be	integral	to	power‐reliability	management	solutions	addressing	these	issues.		

Today’s	 simulation	 infrastructures	 that	 model	 power	 and	 performance	 lack	 reliability	
modeling	 while	 ignoring	 the	 existence	 of	 control	 systems	 that	 can	 dynamically	 alter	
operational	 conditions	 affecting	 quantities	 of	 interest.	Multi‐timescale	 operation	 of	 these	
control	 systems,	 as	well	 as	affected	 characteristics	 (thermal	 ‐	 large	 time	constant,	 timing	
failure	‐	small),	also	increase	the	modeling	and	simulation	challenges.	Even	the	question	of	
whether	 a	 single	 integrated	 modeling/analysis	 approach	 or	 some	 hierarchical	
modeling/analysis	approach	is	better	is	unclear.	

Akin	 to	 SCM	 for	 memory	 applications,	 RF	 and	 optics	 on	 chip	 for	 communication	 are	
interesting	 candidates	 for	 embedded	 and	 server	 platforms	 for	 both	 performance	 and	
efficiency	reasons.	Plenty	of	cross‐layer	design	and	management	opportunities	exist	across	
technology,	circuits	and	microarchitecture	for	these	options.	Modeling	methodologies	that	

 34

analyze	 the	 implications	of	 adopting	a	particular	 technology	 characteristic	with	a	 certain	
circuit	 implementation	 adopted	 for	 a	 particular	 microarchitecture	 design	 are	 mostly	
manual	 today.	A	 generalized	 framework	 for	quick	 exploration	 of	 such	multi‐layer	 design	
options	will	be	needed	for	accelerated	adoption	of	newer	technologies.	

Finally,	the	design	space	exploration	is	a	huge	problem.	 	There	are	many	design	variables	
associated	with	cores,	accelerators,	on‐chip	and	off‐chip	memory	systems,	and	on‐chip	and	
off‐chip	interconnects.	The	number	of	valid	design	points	is	easily	in	the	orders	of	billions	
and	trillions.		Moreover,	the	design	space	is	highly	discrete,	and	usually	non‐convex.	How	to	
search	 effectively	 in	 such	 a	 design	 space	 efficiently	 for	 an	 optimal	 solution	 is	 extremely	
challenging.	

Reliability		

As	 technology	 scales	 beyond	 22nm,	 reliability	 of	 CMOS	 devices	 is	 decreasing.	 This	 has	
traditionally	been	overcome	with	guard	bands,	where	conceptually	the	paradigm	is	to	mask	
the	 imperfection	of	devices	and	continue	creating	 the	 illusion	of	perfection	at	 the	circuit‐
level	 and	 higher.	 While	 this	 idea	 of	 masking	 imperfection	 was	 well	 suited	 for	 previous	
technology	nodes,	as	reliability	gets	increasingly	worse,	the	paradigm	of	masking	errors	is	
causing	enormous	overheads	at	the	circuit	level	and	below.	There	are	tremendous	benefits	
in	 simplifying	 the	 design	 process	 and	 costs	 if	 reliability	 can	 be	 relaxed.	 Furthermore,	
reducing	the	requirements	of	correctness	can	provide	energy	benefits	because	circuits	can	
operate	 at	 common	 case	 operating	 points	 and	 reduce	 margins	 for	 guard	 band,	 etc.	 The	
implication	 then	 for	 the	 higher	 layers	 is	 that	 the	 hardware	 is	 not	 always	 correct.	 This	
introduces	 a	 fundamental	 cross‐layer	 problem	 on	 how	 to	 expose	 the	 hardware’s	 lack	 of	
correctness	 up	 through	 to	 the	 software.	 It	 includes	 exposing	 reliability	 in	 at	 least	 three	
ways:	 i)	building	well‐understood	 fault	models	 that	correlate	with	physical	phenomenon;	
ii)	building	circuit	and	microarchitecture	models	that	build	upon	the	fault	models	to	expose	
mechanisms	to	the	ISA;	and	iii)	building	language	models	that	programmers	can	leverage.	

Ultimately	there	are	several	possible	scenarios.	Device	reliability	may	get	to	be	such	a	large	
problem	 that	 program	 energy	 efficiency	 will	 be	 very	 low	 unless	 programmers	 use	 the	
language	 hooks	 to	 expose	 places	 where	 less	 reliability	 is	 sufficient.	 For	 example,	
multimedia	 processing	 is	 well	 known	 to	 be	 error	 tolerant.	 Another	 scenario	 is	 that	
programmers	may	use	the	reliability	hooks	and	exploit	this	as	an	optimization	for	energy	
tradeoffs—i.e.	 intelligent	 structure	 and	exploitation	of	program	error	 tolerance	 to	obtain	
performance	 or	 energy	 improvements.	 In	 particular,	 in	 mobile	 environments	 or	 cloud	
environments,	such	reliability	requirement	modeling	could	be	easily	exposed	to	end	users,	
and	be	embedded	into	standard	frameworks	like	MapReduce	or	the	Android	SDK,	etc.	

These	language	extensions	will	then	have	to	translate	through	compiler	optimizations	and	
exploit	 the	 microarchitecture	 mechanisms.	 Simple	 examples	 include	 aggressive	 voltage	
scaling,	 tolerating	 aging	 failures,	 etc.	 Micro‐architectural	 and	 circuit	 techniques	 could	
exploit	 the	 relaxed	 reliability	 requirement	 to	 build	 highly	 efficient	 data	 paths	 that	 are	
unreliable.	This	could	also	enable	and	synergistically	cooperate	with	techniques	like	analog	
computing.	 Also,	 fundamental	 architectures	 and	 organizations	 are	 made	 possible	 by	
revisiting	 the	 design	 of	 microprocessors	 if	 we	 assume	 errors	 are	 allowed.	 The	 research	
thrust	 is	 fraught	 with	 the	 inherent	 challenge	 in	 determining	 which	 portions	 (or	 which	

 35

applications)	 cannot	 tolerate	 errors	 and	 the	 best	 way	 to	 guarantee	 one’s	 choice.	 Some	
promising	 research	 has	 begun	 to	 appear	 in	 this	 direction.	 They	 can	 be	 categorized	 as	
quantifying	error	tolerance,	device‐focused	techniques,	architecture‐focused	techniques	to	
expose	reliability,	compiler‐focused	techniques	to	expose	reliability,	and	language‐focused	
techniques	to	expose	reliability.	While	a	vibrant	area	of	research,	much	work	needs	to	be	
done	to	understand	interaction	with	circuits	and	technology	scaling.	

Cross‐layer	Power	Optimization	Opportunities	

Despite	 significant	 challenges,	 we	 see	 great	 opportunities	 ahead	 in	 cross‐layer	 power	
optimization	 to	 achieve	 an	 order‐of‐magnitude	 energy	 efficiency	 improvement	 through	
circuit	 and	microarchitecture	 innovation	 coupled	 with	 software	 optimization.	 	 Here,	 we	
highlight	some	major	opportunities.	

Heterogeneity		

Heterogeneity	means	including	cores	of	various	computing	capability	and	extensive	use	of	
accelerators.	Digital	CMOS	will	 still	 be	 the	main	 implementation	 technology,	 but	 some	of	
the	accelerators	can	be	analog/mixed‐signal	modules	 (such	as	bio‐inspired	components),	
and/or	post‐CMOS	devices.	

Architectural	(e.g.	accelerators)	and	technological	heterogeneity	(such	as	3D	integration	of	
disparate	 technologies	 and	 nodes,	 nanophotonics,	 non‐volatile	 memories)	 provide	 a	
multitude	 of	 performance	 and	 power	 improvement	 opportunities.	 	Power	 efficiency	
advantages	 of	 heterogeneous	 systems	 were	 demonstrated	 by	 a	 number	 of	 studies.	
Accelerator‐rich	 architectures	 provide	 significant	 performance	 and	 energy	 improvement	
for	domain‐specific	computing.	3D	integration	has	been	shown	to	provide	high‐bandwidth	
low‐latency	 interconnect,	 increased	 packaging	 density,	 and	 heterogeneous	 integration	
capabilities	with	 resulting	power	efficiency	advantages	at	 the	architecture/system	 levels.	
Similarly	 non‐volatile	 memories	 have	 been	 shown	 to	 provide	 significant	 static	 power	
reduction	 and	ways	 to	 transform	 various	 levels	 of	 the	memory	 hierarchy.	 However,	 the	
increased	 complexity	 of	 such	 systems,	 as	 well	 as	 the	 lack	 of	 modeling	 and	 tool	
infrastructures,	limits	the	effectiveness	of	microarchitecture	techniques	(and	exploration	of	
architectural	trade‐offs.)		

While	 the	energy	efficiency	of	heterogeneous	architectures	that	 leverage	accelerators	has	
been	 largely	 acknowledged	 by	 both	 academic	 and	 industry	 studies,	 traditional	 power	
management	 techniques	 are	 not	 effective	 in	 such	 architectures.	 	New	 cross‐layer	
approaches	 that	 leverage	 the	 capabilities	 of	 both	 system	 software	 and	 hardware	 are	
needed.	

Tools	 and	models	 that	 specifically	 target	 heterogeneous	 architecture	 and	 heterogeneous	
technology	 designs	 are	 essential	 in	 order	 to	 guide	 microarchitecture	 decisions.	 As	 the	
specific	 challenges	 (such	 as	 temperature	 sensitivity,	 variability,	 reliability)	 vary	
significantly	 across	 emerging	 technologies,	 flexible	 tool	 infrastructures	 will	 be	 key	 in	
providing	the	customization	and	right	levels	of	abstraction	and	speed/accuracy/complexity	
trade‐offs,	as	well	as	the	interactions	among	the	heterogeneous	components.		

 36

Recent	studies	indicate	that	the	potential	performance	and	power	improvement	associated	
with	the	emerging	technologies	and	heterogeneous	architectures	are	significantly	reduced	
without	 careful	 design	 planning.	 This	 clearly	 highlights	 the	 need	 for	 modeling	 and	 tool	
infrastructures	for	effective	adaptation	of	such	systems.		

The	post‐CMOS	era,	and	the	adoption	of	non‐silicon	technologies	(such	as	graphene,	carbon	
nanotubes),	 along	 with	 silicon,	 will	 potentially	 bring	 disruptive	 changes	 in	 the	
microarchitecture	 design	 as	 well	 as	 the	 associated	 modeling/tool	 infrastructures.	 While	
such	disruptive	changes	are	still	 in	 the	 long‐term	outlook,	 forward‐looking	 infrastructure	
development	and	exploration	are	key	in	making	the	adoption	less	challenging.	

Specialization	

Specialization	 is	 a	 well‐known	 technique	 that	 often	 results	 in	 a	 two	 to	 three	 orders‐of‐
magnitude	improvement	in	energy	efficiency	over	a	general‐purpose	system.	These	energy	
benefits	are	realized	by	optimizing	data	movement	by	directly	passing	operands	from	one	
hardware	 unit	 to	 the	 next	 rather	 than	 writing	 to	 memory	 structures,	 and	 eliminating	
instruction	processing	overheads	that	are	present	in	a	general‐	purpose	system.	To	harness	
the	 large	 improvements	 in	 energy	 efficiency	 that	 are	 possible	 with	 custom	 hardware,	
embedded	 system	 and	 SoC	 designers	 have	 been	 using	 fixed‐function	 hardware	 blocks	 in	
their	 systems	 for	 decades.	 Embracing	 specialization	 in	 a	 general‐purpose	 computing	
environment,	 however,	 requires	broadly	 increasing	 the	 scope	of	 applications	 that	 can	be	
supported	 via	 customization.	 	 In	 particular,	 one	 needs	 to	 consider	 efficient	 on‐chip	
architecture	and	software	support	for	accelerator	scheduling,	sharing,	and	virtualization.	

One	 attractive	 way	 of	 improving	 the	 generality	 of	 customized	 hardware	 is	 through	
reconfigurable	 computing.	Reconfigurable	hardware	platforms	 such	 as	FPGAs	and	CPLDs	
allow	the	hardware	designer	to	customize	the	system’s	functionality	after	fabrication,	and	
are	more	 cost‐effective	 than	ASICs	 at	 low	volume.	FPGAs	are	not	a	panacea,	however,	 as	
they	suffer	from	significant	performance	and	energy	overheads	due	to	the	reconfigurable	
interconnect	 that	 ties	 together	 configurable	 look‐up	 tables.	 One	 promising	 avenue	 to	
address	these	shortcomings	is	to	leverage	emerging	resistive	memory	technologies	such	as	
phase	change	memory	(PCM)	or	spin‐torque	transfer	magneto‐resistive	RAM	(STT‐MRAM.)	
Resistive	 memories	 hold	 the	 potential	 to	 replace	 the	 SRAM‐based	 lookup	 tables	 and	
configuration	 registers	 in	 existing	 FPGA	 chips;	 the	 significant	 density	 advantage	 of	 these	
novel	technologies	over	SRAM	should	translate	directly	to	shorter	interconnects,	and	thus	
lower	 interconnect	 power	 than	 current‐generation	 reconfigurable	 systems.	 Other	
interconnect	 technologies,	 such	 as	 RF	 or	 optical	 interconnects,	 are	 other	 research	
directions	 with	 significant	 potential	 for	 making	 FPGAs	 more	 energy	 efficient.	 Another	
direction	 is	 to	 consider	 programmable	 fabrics	 of	 different	 levels	 of	 granularity—in	
particular,	developing	new	programmable	fabrics	that	are	more	compute‐friendly.		Finally,	
compilation	time	for	reconfigurable	computing	needs	to	be	greatly	shortened.		The	time	for	
logic	synthesis	and	physical	design	of	a	modern	FPGA	can	be	tens	of	hours,	 far	exceeding	
the	compilation	time	for	general‐purpose	CPUs	or	GPUs.			Substantial	effort	and	investment	
need	to	be	made	to	achieve	two	or	more	orders	of	reduction	of	compilation	time	to	make	
reconfigurable	computing	practical	for	wider	adoption.	

Further	Advances	on	Standard	Interface		

 37

The	cross‐layer	power	optimization	and	management	framework	is,	in	general,	a	way	for	a	
lower‐level	layer	to	provide	a	feature	that	enables	the	control	knobs,	and	an	upper	layer	to	
utilize	the	control	knobs.	This	approach	can	achieve	a	power	saving	closer	to	the	optimal	
than	within‐layer	power	optimization	because	a	higher	 layer	has	more	 information	 from	
the	applications	and/or	users	and	is	aware	of	more	accurate	information	about	the	system	
idleness.	 In	view	of	systems	theory	(cascaded	control),	 the	lower	layer	corresponds	to	an	
inner	 control	 loop	 that	 ensures	 stability,	 and	 the	 upper	 layer	 corresponds	 to	 an	 outer	
control	loop	that	determines	the	set	point	(supervisory	control.)	The	interface	between	the	
lower	 layer	 and	 the	 upper	 layer	 must	 guarantee	 stability	 of	 the	 system	 as	 well	 as	 the	
maximum	effectiveness	of	power	management.	An	appropriate	 level	of	abstraction	 is	 the	
key	to	the	success	of	cross‐layer	power	optimization	and	management.	

Transmeta	 pioneered	 DVFS	 for	 microprocessors	 based	 on	 its	 code	 morphing	 software	
(CMS.)	The	CMS	idea	was	successful,	and	is	also	currently	widely	used.	However,	they	tried	
to	 apply	 DVFS	within	 the	 CMS	 framework,	 but	 their	method	 does	 not	 fully	 consider	 the	
upper‐layer	software	architecture	and	behavior	when	DVFS	is	applied.	The	CMS	framework	
does	 not	 provide	 enough	 long‐term	 software	 idleness	 information,	 which	 significantly	
reduces	potential	 gain	 from	DVFS.	 Consequently,	DVFS	 results	 in	more	performance	 loss	
compared	 to	energy	gain.	The	 inner‐layer	DVFS	 is	 still	used	 today.	 It	may	achieve	power	
gain	but	may	have	negative	energy	gain,	which	contradicts	the	DVFS	philosophy.		

A	 proper	 interface	 specification	 between	 layers	 is	 crucial	 for	 cross‐layer	 power	
optimization.	 A	 well‐defined	 standard	 interface	 between	 the	 microarchitecture	 and	 its	
upper‐layer	 interface	 can	 be	 fully	 aware	 of	 the	 functionality	 and	 limitation	 of	 the	 power	
management	 feature	 provided	 by	 the	 microarchitecture.	 For	 a	 given	 workload	 and	 a	
deadline,	 a	 hypervisor	 should	 be	 able	 to	 determine	 the	 clock	 frequency	 of	 the	 CPU	 and	
memory	and	voltage	level	of	the	CPU,	for	example.	Companies	typically	have	a	proprietary	
interface	 between	 the	 microarchitecture	 and	 hypervisor.	 However,	 a	 systematic	
implementation	 requires	 an	 industry	 standard	 description	 of	 the	 control	 register	 (for	
example)	to	read	and	modify	the	system	states,	power	consumption,	die	temperature,	and	
so	on,	that	ensures	safe	system	operation	as	well	as	maximum	power	saving.		

Most	 of	 all,	 an	 industry	 standard	 between	 the	 microarchitecture	 and	 hypervisor	 may	
provide	a	great	change	for	application	programs	running	on	mobile	platforms,	which	need	
more	aggressive	cross‐layer	optimization.	As	mobile	platform	applications	are	often	based	
on	 real‐time	 image	 and	 audio	 processing	 and	 communication,	 such	 a	 standard	 interface	
enables	 the	 optimal	 DVFS	 with	 exact	 knowledge	 of	 the	 system	 idleness.	 With	 a	 well‐
designed	 frame‐rate	 control	 of	 the	 built‐in	 camera,	 DVFS	 of	 the	 CPU	 and	 acceleration	
hardware,	 memory	 power	 management,	 and	 radio	 power	 management/control,	 the	
standard	interface	may	achieve	a	2‐10x	additional	power	saving	for	Android	applications.		

Memory	Power	

Off‐chip	memory	power	(DRAM)	is	an	increasing	fraction	of	system	power	and	increasing	
limitation	 to	 computing	 capability	 growth.	 Many	 core	 approaches	 to	 processor	
performance	growth	further	exacerbate	this	issue.	A	promising	solution	is	the	integration	
of	 large	 amounts	 of	 DRAM	 (or	 SCM	 looking	 to	 the	 more	 distant	 future)	 onto	 the	 same	
package,	 leveraging	 silicon	 interposer	 technology	 or	 3D	 stacking	 obtaining	 lower‐power,	

 38

and	 high	 bandwidth	 connectivity	 between	 processors	 and	memory.	 A	 cross‐stack	 design	
effort	 is	 necessary	 across	 packaging,	 circuits	 (e.g.	 wiring	 across	 3D,	 power	 delivery),	
microarchitecture	(e.g.	changes	 to	memory	array	designs	suitable	 for	cache‐line	and	sub‐
cache‐line	 access	 rather	 than	 page‐level	 access,	 techniques	 to	 address	 wear‐out,	 write‐
current	 issues	 for	 SCM)	 to	 reach	 a	 feasible	 design	 point	 and,	 potentially,	 runtime	 and	
application‐level	 design	 changes	 to	 take	 better	 advantage	 of	 this	 increased	 integration.	
New	 power	 delivery,	 management	 and	 cooling	 techniques	 again	 spanning	 circuits,	
microarchitecture	 and	 software	 components	 are	 needed	 to	 optimize	 capabilities	 in	 this	
tightly	integrated	solution.	

Co‐optimization	

A	 key	 opportunity	 for	 cross‐layer	 power	 optimization	 and	 management	 is	 to	 use	 co‐
optimization	 at	 design	 time	 and	 at	 run	 time.	 In	 the	 sensor	 platform	 domain	 there	 are	
opportunities	 to	 come	 up	with	 plug‐and‐play	 solutions	 that	 can	 use	 any	 of	 a	 number	 of	
various	 sources	 of	 energy	 (e.g.	 battery,	 energy	 harvesting,	 etc.),	 various	 computation	
engines	 that	 tradeoff	 performance	 for	 power,	 and	 diverse	 communication	 channels	
depending	on	availability—all	while	globally	optimizing	for	desired	overall	metrics.	In	the	
mobile	 platform	 domain	 there	 are	 rich	 opportunities	 for	 device/cloud	 co‐optimization.	
Sometimes,	 but	 not	 always,	 it	 is	 better	 to	 offload	 some	 computation	 to	 the	 cloud	 if	 that	
saves	energy	and/or	increases	performance	on	the	mobile	platform—even	at	the	expense	
of	extra	energy	in	the	cloud.	Offloading	to	the	cloud,	however,	may	not	be	desirable	under	
some	conditions,	e.g.	when	the	savings	on	the	mobile	are	minimal,	or	when	the	overhead	on	
the	cloud	is	too	large.	Yet	even	in	that	case,	offloading	might	need	to	be	made	at	run	time	
when	 batteries	 get	 depleted.	 In	 the	 server	 platform	 domain	 there	 are	 significant	
opportunities	for	co‐optimization	of	the	traditional	compute	platform	in	conjunction	with	
the	 cooling	 solution	 and	 the	 power	 delivery	 solution.	 For	 example,	 allowing	 for	 the	
operating	 temperature	 to	 get	 slightly	 warmer	 may	 allow	 for	 overall	 power	 and	 energy	
savings	when	 the	 compute	 and	 cooling	 power	 are	 considered	 together.	 Some	 of	 the	 co‐
optimization	opportunities	include:	

 Sensor:	plug‐and‐play	with	global	metric	optimization	
 Mobile:	mobile/cloud	co‐optimization	
 Server:	 compute/cooling/delivery	 co‐optimization	 (e.g.	 higher	 temperature	

unregulated	operation)	

Exposing	 on‐chip	 communication	 from	 the	microarchitecture	 to	 the	 higher	 levels	 of	 the	
stack	may	also	present	an	important	opportunity	for	cross‐layer	optimization.		But	this	idea	
needs	to	be	further	researched	and	validated.	

Platform‐Specific	Optimization	

Embedded	system	
Embedded	 systems	 are	 highly	 specialized	 circuits.	 Most	 of	 the	 embedded	 systems	 are	
designed	 for	 real‐time	 applications	 such	 as	 sensing	 and	 controlling.	 The	 hardware	 and	
software	 are	 usually	 customized	 for	 specific	 applications.	 They	 provide	 very	 little	
programmability,	 which	 enables	 closely	 coupled	 hardware‐software	 co‐optimization	 at	

 39

design	 time.	 	A	 design	 environment	 that	 enables	 seamless	 vertical	 integration	 will	 be	
critical	and	most	efficient	to	achieve	energy	optimization.	

From	 a	 system	 point	 of	 view,	 an	 embedded	 system	 is	 an	 integration	 of	 computation,	
storage	 and	 communication	 components,	 as	 well	 as	 energy	 storage	 (i.e.	 battery,	 super	
capacitor)	 and	 energy	 harvesting	 units.	 Microarchitecture	 designers	 should	 provide	
hardware	channels	 to	efficiently	monitor	and	manage	 these	devices	during	runtime.	New	
abstractions	 and	 interfaces	 have	 to	 be	 investigated	 to	 coordinate	 the	 management	 of	
energy	 harvesting/storage	 units	 together	 with	 the	 management	 of	 energy	 consumption	
units	(e.g.	embedded	systems.)	

Some	 of	 the	 embedded	 systems,	 such	 as	 environment	 monitoring	 systems,	 are	 natural	
candidates	 for	 approximate	 computing.	 Techniques	 such	 as	 a	 relaxed	 guard	 band	 for	
improved	power	efficiency	 could	be	 applied	 in	 these	 systems.	 	Other	 embedded	 systems,	
for	example	embedded	controllers	of	airplanes	or	automobiles,	 are	mission‐critical.	They	
have	a	nearly	zero	tolerance	of	error.	Reliability	constrained	energy	optimization	at	design	
time	should	be	investigated.	

Mobile	computing	system	
Mobile	computing	systems	have	a	large	amount	of	specialized	circuits.	They	provide	some	
degree	 of	 customization	 and	 reasonable	 support	 for	 programmability.	 	The	 software	
running	on	a	mobile	computing	system	is	a	mixture	of	large	amounts	of	application‐specific	
computing,	 such	 as	 gaming,	 video/audio	 encoding/decoding,	 etc.,	 with	 heavy	 user	
interactions.	For	typical	mobile	computing	systems,	reliability	is	not	as	critical	as	security.	
It	 is	acceptable	to	have	 jitters	 in	video	playing	as	 long	as	 it	 is	within	the	user’s	tolerance.	
However,	 access	 to	 a	 protected	memory	 region,	 which	 would	 lead	 to	 a	 security	 breach,	
should	 definitely	 be	 prevented.	 The	 microarchitecture	 should	 allow	 the	 trade‐off	 of	
reliability	 for	 energy	 efficiency	 up	 to	 certain	 degree,	 such	 that	 it	 satisfies	 the	 QoS	 and	
security	 requirement.	 Error	 detection	 and	 fault	 recovery	 mechanisms	 should	 be	
investigated.	

Display	 and	wireless	 interface	 are	 two	major	 power‐consuming	 components	 in	 a	mobile	
system.	While	backlight	dominates	the	power	consumption	of	a	traditional	LCD,	emerging	
organic	 light‐emitting	diode	(OLED)‐based	displays	do	not	require	backlight	and	the	RGB	
value	of	 a	pixel	determines	 its	power	 consumption.	This	architecture	difference	between	
OLED	and	LCD	brings	new	opportunities	in	OLED	display	power	optimization.	Recent	work	
has	 demonstrated	 the	 effectiveness	 of	 content‐aware	 supply	 voltage	 scaling	 on	 OLED	
displays	[1]	and	the	effectiveness	of	color	transformation	[2].	This	suggests	new	cross‐layer	
power	 optimization	 opportunities	 in	 designing	 the	 control	 circuits	 and	 architecture	 of	
OLED	displays,	as	well	as	making	applications	aware	of	their	display	energy	cost	through	
an	OLED	display	energy	model.	

Another	hardware	 trend	of	mobile	 systems	 is	 the	use	of	multiple	 antennas	 for	 improved	
network	speed	and	overall	network	capacity.	For	example,	spatial	multiplex	multiple	input	
multiple	output	(MIMO)	technology,	adopted	by	802.11n	and	LTE,	sends	independent	data	
streams	 through	 antennas	 to	 leverage	 spatial	 channel	 diversities	 for	 enhanced	 speed.	 In	
another	 example,	 recent	 research	 has	 suggested	 that	 a	 mobile	 device	 form	 a	 focused	
radiation	pattern	 through	digital	beam	 forming	 in	order	 to	conserve	 transmission	power	

 40

and	improve	network	capacity.	The	use	of	multiple	antennas	along	with	their	transceivers	
increases	 the	circuit	power	consumption	but	has	 the	potential	 to	significantly	reduce	 the	
radiation	 power	 consumption.	 The	 most	 energy‐efficient	 number	 of	 antennas	 to	 use	
depends	 on	 the	 communication	 requirement—such	 as	 throughput	 and	 range	 as	
demonstrated	 by	 recent	 work	 [3].	 This	 suggests	 an	 important	 cross‐layer	 power	
optimization	 mechanism	 that	 power‐manages	 the	 multi‐antenna	 transceivers	 based	 on	
communication	requirement.	

Servers	
Servers	have	 the	 least	amount	of	specialized	circuits	and	the	maximum	programmability.	
They	have	 the	 highest	 requirement	 for	 both	 reliability	 and	 security.	 Runtime	 cross‐layer	
power	optimization	is	critical	to	achieve	the	energy	efficiency	of	servers.		

It	is	agreed	that	we	need	to	focus	more	on	cross‐layer	channels	to	exchange	power	models	
and	workload	requirements	between	microarchitecture	and	upper‐level	applications.	More	
accurate	power	models	and	highly	standard	constraint	languages	are	believed	to	facilitate	
the	 cross‐layer	 power	 management.	 New	 memory	 technologies	 such	 as	 NVM	 should	 be	
investigated.	 Heterogeneity,	 including	 cores	 of	 various	 computing	 capabilities	 and	
extensive	 use	 of	 accelerators,	 should	 be	 introduced	 to	 increase	 energy	 efficiency	 at	 this	
level.	However,	we	need	new	techniques	to	efficiently	and	accurately	estimate	the	benefits	
and	the	overhead	of	introducing	heterogeneity.	Compiler	support	should	also	be	provided	
to	utilize	the	heterogeneity.	

Another	dimension	of	cross‐layer	optimization	at	the	server	level	is	computing,	cooling	and	
delivering	 co‐optimization.	 Chip‐level	 interconnect	 and	 packaging	 technology	
advancements,	 combined	with	micro‐architecture	 and	 circuit‐level	 innovations,	 can	 turn	
this	challenge	into	a	tremendous	opportunity.	

Natural/Biological	Systems	
Understanding	other	natural/biological	 systems	 that	achieve	better	energy	efficiencies	at	
non‐deterministic	 tasks	 can	 serve	 as	 an	 inspiration	 for	designing	more	 efficient	 domain‐
specific	 accelerators.	 The	 primate	 brain	 is	 considered	 to	 be	more	 efficient	 in	 processing	
several	tasks	such	as	visual	processing,	speech	recognition	and	reasoning.	For	example,	the	
energy‐efficiency	 of	 a	 human	 brain	 is	 estimated	 to	 be	 106	 times	 better	 than	 the	 IBM	
supercomputer	 that	 competed	 in	 a	 quiz	 competition.	 What	 can	 be	 learned	 from	 the	
efficiencies	in	algorithmic,	encoding,	signaling,	and	implementation	fabric	used	in	a	brain?	
What	are	the	synergies	across	these	different	elements	of	the	brain’s	operation	that	achieve	
these	energy	efficiencies?	 	Can	 it	help	 to	 identify	 similar	 cross‐layer	optimizations	across	
hardware‐software	designs	to	achieve	similar	energy	efficiencies?	Can	there	be	inspiration	
from	 the	 structure	 of	 the	 communication	 fabrics	 in	 the	 brain	 for	 designing	 on‐chip	
communication	 fabrics?	 Can	 these	 principles	 influence	 the	 design	 of	 domain‐specific	
accelerators?	 Accelerator	 implementations	 of	 algorithms	 based	 on	 brain‐based	 visual	
models	 such	 as	 Convolutional	 Neural	 Networks	 and	 HMAX	 [4][5]	 demonstrate	 10‐20x	
improvements	over	execution	on	existing	general‐purpose	fabrics	such	as	GPUs	and	CPUs.	
These	 accelerator	 fabrics	 achieve	 energy	 efficiencies	 of	 1	 TeraOPs/Watt	 for	 visual	
processing	[6].	How	can	these	efficiencies	be	further	enhanced	using	emerging	device	and	
circuit	 primitives?	 Early	 prototypes	 are	 emerging	 of	 dense	 crossbar	 arrays	 using	 non‐

 41

volatile	 memory	 technology	 to	 achieve	 low‐power,	 low‐leakage,	 dense	 fabrics	 for	
processing	vision	algorithms	[7].		Energy‐efficient	microarchitectures	for	visual	perception	
can	help	a	variety	of	critical	applications	in	health	(aiding	visually	impaired)	and	homeland	
security	(pervasive	smart	sensors.)	

	

 42

Area 3: Micro-architecture, Systems, and Beyond

	

Area	Leader:	Margaret	Martonosi	

Co‐Editor:	Sudhanva	Gurumurthi	

Other	Area	Members:	Murali	Annavaram,	Rajeev	Balasubramonian,	Pradip	Bose,	 Jeffrey	
Draper,	 Brucek	 Khailany,	 Hyesoon	 Kim,	 Rami	Melhem,	 Trevor	Mudge,	 Onur	Mutlu,	Mani	
Srivastava,	Michael	Taylor,	Josep	Torrellas	

	

Rajeev	Balasubramaniam,	Pradip	Bose,	Sudhanva	Gurumurthi,	Brucek	Khailany,	Margaret	
Martonosi,	Onur	Mutlu,	Trevor	Mudge	

There	 is	 a	 current	 and	 growing	 crisis	 in	 power	 management	 for	 a	 range	 of	 power‐
performance	design	points	for	mobile	to	enterprise	computer	systems.		In	this	section,	wr	
review	 examples	 of	 success	 and	 failure	 stories	 in	 cross‐layer	 power	 optimization	
approaches	 followed	 by	 opportunities	 and	 possible	 approaches	 to	 address	 the	 micro‐
architectural	and	system	level	design	challenges	via	cross‐layer	approaches.	

Success	Stories	

The	interface	between	hardware	and	software	has	seen	significant	attention	for	cross‐layer	
power	optimizations	over	the	years.		From	a	very	expansive	point	of	view,	even	things	like	
general	compiler	optimizations	and	some	cache	hierarchy	optimizations	can	be	viewed	as	
power	 optimizations,	 because	 many	 such	 performance‐aimed	 techniques	 also	 improve	
power	dissipation.			

Focusing	more	narrowly	on	cross‐layer	power	optimizations,	the	research	community	has	
proposed	 and	 evaluated	many	 ideas,	 of	which	 some	 have	made	 it	 into	 real	 systems	 and	
others	have	seen	less	widespread	adoption.	

We	discuss	here	 two	 iconic	 examples	of	 the	power	of	 cross‐layer	power	optimization:	 	 a	
mobile	scenario	and	one	 from	enterprise‐class	systems.	 	After	describing	the	success	and	
potential	 of	 such	 cross‐layer	 approaches,	we	will	 follow	with	more	 detailed	 thoughts	 on	
why	such	successes	are	so	 limited,	what	research	can	do	 to	help	such	successes	be	more	
widespread,	and	why	we	need	to	fund	such	research	now.	

Example	1:	Mobile	scenario:	

Mobile	phones	are	clearly	an	example	of	a	power‐constrained	system,	and	the	 increasing	
computational	 demands	 on	 smartphones	 mean	 that	 increasingly‐aggressive	 power	
optimization	and	management	is	needed	across	all	hardware	and	software	levels.			

Example	2:	BlueGene‐Q	

At	the	enterprise	level,	IBM’s	BlueGene‐Q	effort	represents	success	with	cross‐layer	power	
optimization	 for	 a	 high‐end	 supercomputer.	 	 Blue‐Gene‐Q	 instances	 have	 dominated	 the	
Green500	 list	which	 enumerates	 the	most	 energy‐efficient	 supercomputers	 in	 the	world.		

 43

One	example	of	a	 cross‐layer	optimization	was	 the	design	of	 the	basic	 compute	node:	an	
SoC	 with	 embedded	 DRAM	 +	 16+1	 compute	 cores	 +	 network	 switch.	 	 Integrating	 the	
network	 switch	 onto	 the	 SoC	 allowed	 for	 high‐performance	 at	 lower‐power.	 	 High	
integration	and	SoC	approaches	have	helped	reduce	power	needs.		In	addition,	using	lower‐
voltage	 circuit	 design	 techniques	 (relative	 to	 the	 45nm	 technology	 node)	 allowed	 for	
further	savings.			

While	BlueGene‐Q’s	 hardware	 integration	may	be	 considered	 a	 power	 success,	 there	 are	
also	aspects	of	the	hardware‐software	interface	where	even	more	cross‐layer	optimization	
may	 have	 been	 possible.	 	 For	 example,	 while	 the	 hardware	 design	 was	 aggressive,	 the	
hardware‐software	 connection	 was	 not	 particularly	 strong.	 	 The	 operating	 system	 is	 a	
ported	version	of	Linux,	but	aggressive	power	optimization	has	not	been	included	in	it	yet.			

This	sort	of	staged	adoption	of	power	optimization	in	operating	system	and	applications	is	
fairly	 common	 in	 both	mobile	 and	 enterprise	 computing.	 	 In	 some	ways,	 it	 points	 even	
more	strongly	to	the	need	for	appropriate	cross‐layer	information	flow	and	abstractions,	so	
that	power	optimizations	can	be	integrated	into	systems	in	a	staged	fashion.	

Summary:	 	 For	 both	 the	 mobile	 and	 enterprise	 examples	 above,	 there	 are	 a	 few	 clear	
characteristics	that	allowed	these	cross‐layer	success	stories	to	happen.		A	major	enabler	of	
these	success	stories	was	that	the	same	corporate	organization	controlled	all	or	most	of	the	
system	 design	 layers.	 	 This	 means	 that	 when	 more	 information	 was	 needed	 to	 flow	
between	two	layers,	 the	decision	about	how	or	 if	 to	 implement	 it	did	not	need	to	 involve	
two	separate	companies.			

Another	characteristic	 that	 is	common	to	 these	 two	success	stories	 is	 that	 the	aggressive	
system	goals	required	concerted	power	management	innovations	beyond	what	would	have	
been	possible	without	cross‐layer	attention.		In	the	case	of	mobile	phones,	battery	life	and	
thermal	issues	so	directly	influence	consumer	experience	that	aggressive	low‐power	goals	
are	 universal.	 	 As	 a	 result,	 the	 mobile	 space	 aggressively	 employs	 heterogeneity	 in	
processors,	storage,	and	other	system	modules.		At	the	enterprise	level,	scaling	goals	mean	
that	 very‐large‐scale	 very	 high‐performance	 compute	 engines	 can	 ONLY	 be	 built	 if	 their	
power	dissipation	is	minimized	in	all	possible	ways.			

Opportunities	 and	 Possible	 Approaches	 to	 address	 the	 challenges	 via	
cross‐layer	approaches	

Green	Computing	

Environmental	pressures	and	government	rating	systems	(e.g.	EnergyStar)	have	resulted	in	
initial	experimental	R&D	in	the	area	of	“green”	or	“zero‐emission”	data	centers	(e.g.	work	
done	by	IBM	Zurich	Research	Lab,	in	collaboration	with	EPFL	[8].)	In	such	approaches,	the	
heat	dissipated	from	data	centers	is	reused	to	serve	as	energy	sources	for	city	heating	and	
water	desalination	projects.	Recent	 research	 from	University	of	Florida	 [9]	has	proposed	
the	use	of	renewable	energy	sources	(specifically	solar	power)	to	ease	the	power	burden	of	
servers.	These	 ideas	call	 for	cross‐layer	optimization	and	modeling	across	energy	supply,	
workload‐driven	 demand	 and	 heat	 recycling.	 Significant	 new	 research	 investment	 is	
required	to	expedite	R&D,	with	quick	technology	transfer	in	this	crucial	new	emerging	area	
of	green	computing.	

 44

Processing‐Near‐Memory	

3D	packaging	is	an	emerging	technology	that	facilitates	close	integration	of	processor	units	
and	memory	units.	 	Thus,	 there	 is	an	opportunity	to	access	DRAM	main	memory	without	
traversing	 expensive	 off‐chip	 interconnects.	 	 This	 helps	 overcome	 the	 power	 wall	
associated	with	achieving	high	bandwidth	access	to	memory.			Some	emerging	applications	
are	 excellent	 fits	 for	 processing‐near‐memory	 abstractions.	 	 For	 example,	 MapReduce	
applications	 are	 embarrassingly	 parallel	 during	 the	 Map	 phase	 and	 can	 be	 effectively	
mapped	 to	 a	 processing‐near‐memory	 architecture.	 	 	 To	 exploit	 such	 architectures,	 we	
need	 new	 programming	 models	 to	 facilitate	 application	 development,	 new	 compiler	
strategies	for	the	low‐power	cores	on	a	3D	stack,	and	runtime	systems	that	can	manage	co‐
ordination	 between	 many	 threads.	 	 Furthermore,	 the	 tradeoffs	 between	 capacity	 and	
bandwidth	at	different	 level	of	 the	memory	hierarchy	could	change	significantly,	and	will	
require	 cross‐layer	 optimization	 between	 architectural,	 programming	 systems,	 and	
application	layers.	

Tools	

Writing	 parallel	 programming	 has	 been	 one	 of	 the	 major	 challenges	 in	 programming.	
Parallel	programming	is	fundamentally	hard,	but	we	could	also	argue	that	the	lack	of	tools	
to	help	programs	 is	 another	 cause.	 	Assisting	parallel	 programming	 is	 important	 to	both	
programmer	 productivity,	 and	 program	 efficiencies	 in	 this	 heterogeneous	multicore	 era.		
Hence,	 developing	 software	 tools	 that	 can	 help	 programmers	 and/or	 other	 software	
systems	is	pressing	needs.		For	example,	if	a	profiling	tool	can	identify	energy	inefficiencies	
of	 computations,	 programmers	 or	 software	 system	 can	 optimize	 and	 tune	 the	 identified	
section.	 Tools	 to	 provide	 which	 algorithms	 might	 be	 more	 efficient	 in	 the	 underlying	
hardware	can	also	improve	the	quality	of	code.			

We	also	need	more	energy	and	performance	monitoring	tools.	Even	though	many	hardware	
performance	 counters	 are	 available,	 not	many	 easy	 programs/tools	 that	 provide	 energy	
and	performance	information	to	programmers	exit.	This	kind	of	feedback	information	can	
be	also	directly	 connected	with	dynamic	 compilation	 system	 to	optimize	programs	more	
efficiently.		

Criticality	

Not	all	work	is	equally	important	and	critical.	Programmers	or	compilers	can	easily	know	
critical	tasks	from	non‐critical	ones.	Knowing	criticality	can	provide	many	opportunities	in	
various	 layers.	For	example,	non‐critical	work	can	be	easily	 sent	 to	 low‐performance	but	
high	 energy	 efficient	 cores/memories.	 We	 can	 also	 control	 DVFS	 to	 improve	 energy	
efficiencies	 for	 non‐critical	 work.	 Another	 example	 can	 be	 found	 from	 UI	 threads	 vs.	
computation	threads.	OS	can	expose	this	information	or	priority	to	the	application	level.	

Unfortunately,	 right	 now	 there	 is	 no	 good	 way	 for	 hardware	 to	 get	 this	 criticality	
information	 from	 upper	 layers.	 There	 should	 be	 some	 generic	 ways	 of	 transferring	 this	
information	from	software	systems	to	the	underlying	hardware.		

New	Abstraction	Layers	

 45

ISA	has	been	a	great	way	of	hiding	the	complexity	of	hardware	or	software	but	providing	a	
concrete	 and	 stable	 interface	 between	 two	 layers.	 	 	 Consequently,	 quite	 amount	 of	
information	 from	 software	 is	 lost	 on	 the	 way.	 Examples	 are	 criticality,	 data‐flow	
information,	data	 locality,	data	movements	etc.	 	As	a	result,	hardware	 tries	 to	regenerate	
information	using	only	transistors	such	as	finding	critical	threads,	critical	data	etc.	Hence,	
this	might	be	the	time	for	us	to	re‐think	about	the	granularity	of	ISAs.	If	software	can	pass	
the	 characteristics	 of	 software,	 the	 hardware	 can	 use	 that	 information	 to	 improve	
performance	and	power.	Then,	what	will	be	the	right	way	of	passing	the	information?	What	
should	be	the	right	granularity?		

Example	Topic	Areas	

This	section	begins	by	describing	a	set	of	three	key	topic	areas	that	will	be	instrumental	to	
supporting	cross‐layer	power	management	and	the	high‐leverage	power	savings	it	can	lead	
to.			

Modeling,	formal	specifications,	and	abstraction	layers	

Lower	 levels	of	 abstraction	 in	 the	design	hierarchy	have	better	 coupling	between	 layers,	
because	 their	 specification	 is	 based	 on	 established	models,	 for	 example:	 physical	 circuit	
models,	 Boolean	 algebra,	 register‐transfer	 languages,	 etc.	 One	 of	 the	 things	 that	 inhibit	
cross‐layer	 optimizations	 from	 the	 system	 level	 to	 the	 (micro)architectural	 layer	 and	
downwards	 is	 the	 lack	 of	 a	 formal	 specification	 language.	 	 This	 area	 is	 in	 its	 infancy	 in	
terms	 of	 experimental	 research	 or	 commercial	 systems	 like:	 BlueSpec,	 SystemC,	
SystemVerlilog,	etc.	These	specification	 languages	are	still	at	a	 level	of	abstraction	 that	 is	
too	 low	 level	 for	 architects	 to	 convey	 to	 and	 receive	 information	 from	 levels	 below	 the	
system	 abstraction	 layer.	 Significantly	 more	 investment	 is	 needed	 to	 bridge	 the	 gap	
between	the	system	architecture	level	and	the	physical	implementation	layers.		

Examples	 of	 the	 capabilities	 we	 envision	 as	 a	 result	 of	 inventing	 such	 an	 executable	
specification	layer	for	system	architecture	are:	

● Linkage	between	 IPC	and	 cycle	 time	aspects	of	 system	performance,	which	would	
allow	 architects	 to	work	with	 logic	 and	 circuit	 designers	 in	 co‐optimization	mode	
with	the	goal	of	maximizing	net	power‐performance	efficiency	metrics	(e.g.	energy‐
delay.)	

● Automatic	 creation	 of	 cycle‐accurate	 and	 latch‐accurate	 architecture‐level	
simulators,	 that	 facilitate	 cross‐validation	 across	 the	 architecture	 and	 RTL	 layer	
models	of	the	machine.	

● Specification	and	modeling	of	embedded	sense‐and‐actuate	power/thermal	control	
loops	 that	 allow	workload‐driven	 benefit	 analysis	 with	 accurate	 physical	 energy‐
related	metrics	 included	 in	 the	 overall	 analysis;	 also	 this	 allows	 the	 architecture‐
logic‐circuit	 cross‐layer	 team	 to	make	more	 optimal	 choices	 regarding	 the	 timing	
and	extent	of	applied	power	control	actuation	knobs.	

In	addition	to	design‐time	specifications	across	the	architectural	boundaries,	there	is	also	a	
need	 for	 higher	 abstraction	 layers	 to	 assist	 in	 system‐level	 mapping	 and	 scheduling	
choices,	particularly	when	dynamic	and	heterogeneous	parallelism	are	involved.		We	argue	
for	 System‐Level	 Instruction	 Set	 Architectures	 that	 allow	 coarser‐grained	 chunks	 of	

 46

computation	to	be	managed	and	scheduled.	 	By	avoiding	per‐instruction	handling,	energy	
overheads	 can	 be	 greatly	 reduced,	 and	 coarser‐granularities	 also	 assist	 longer‐term	
planning	of	communication	and	energy	planning	across	large	multi‐core	chips.			

Accounting	for	and	Minimizing	Communication	Distances	

The	 cost	 of	 communication	 is	 now	 significantly	 higher	 than	 the	 cost	 of	 computation.	 	 A	
single	64‐bit	double‐precision,	floating‐pint	multiply‐accumulate	operation	only	consumes	
50	pJ.		Fetching	a	256‐bit	value	from	a	cache	bank	that	is	1	mm	away	costs	31	pJ.		Fetching	
the	same	value	from	a	distant	cache	bank	costs	1.2	nJ.		Thus,	there	is	an	order	of	magnitude	
difference	in	communication	energy	depending	on	where	data	is	found	on	the	chip.			

Similarly,	main	memory	organizations	are	also	highly‐distributed.		Data	may	be	found	in	a	
memory	 DIMM	 on	 a	 local	 channel,	 or	 may	 require	 multiple	 hops	 through	 inter‐socket	
interconnects	(e.g.	Intel	QPI),	or	buffer	chips	(e.g.	Intel	SMB),	or	off‐board	interconnects	(if	
data	is	allocated	in	a	memory	blade.)		The	average	cost	of	communication	will	again	vary	by	
an	 order	 of	 magnitude	 depending	 on	 the	 quality	 of	 data	 placement	 in	 main	 memory.		
Currently,	higher	levels	of	the	system	stack	(application,	OS,	compiler)	are	largely	unaware	
of	data	placement	in	caches	and	memory	modules.	 	This	missing	link	leads	to	an	order	of	
magnitude	increase	in	communication	energy	on	average.	

Communication	distance	can	be	minimized	by	not	only	placing	data	in	appropriate	regions	
of	the	memory	space,	but	by	also	moving	computations	to	the	memory	when	appropriate.		
Such	 computation	 migration	 requires	 extensive	 support	 from	 the	 operating	 system	 and	
programming	model,	artifacts	that	do	not	currently	exist.	

Supporting	heterogeneity	

Power	 optimization	 needs	 have	 driven	 the	 system	 architecture	 community	 towards	
heterogeneous	multi‐core	 designs,	with	 embedded	 accelerator	 “sub‐cores”	 connected	 via	
heterogeneous	interconnect	elements.	However	the	programming	model	and	software	task	
scheduling	 support	 still	 lack	 the	 formalism	 required	 to	 exploit	 the	 full	 potential	 of	 this	
emerging	 paradigm	 shift.	 Significant	 new	 research	 investment	 is	 needed	 to	 facilitate	 co‐
design	and	co‐optimization	across	the	application,	system	software	and	architecture	layers.	
One	potential	 solution	would	employ	a	menu	or	 library	of	different	 computing	units	 (i.e.	
cores	 and	 accelerators)	 that	 can	 be	 deployed	 statically	 (during	 design)	 and	 invoked	
dynamically	 during	 power	 management.	 Again,	 progress	 towards	 an	 executable	
specification	language	(as	mentioned	before),	with	suitable	extensions	to	cater	to	the	multi‐
core	 abstraction	 layer,	 will	 enhance	 our	 ability	 to	 solve	 the	 current	 impediments	 to	
exploiting	the	paradigm	of	pervasive	heterogeneity.		

Why	now?	

In	 the	 last	 decade,	 successive	 generations	 of	 semiconductor	 technologies	 have	 deviated	
more	and	more	 from	classical	scaling,	resulting	 in	unsustainable	 levels	of	energy	density.	
Perhaps	the	most	recognizable	contributing	factor	of	this	condition	is	the	slowing	pace	of	
voltage	 scaling.	 In	 computer	 platforms	 ranging	 from	 the	 sensing,	 portable,	 and	 server	
domains,	 power	has	 become	 the	most	 important	 constraint.	 As	 a	 result,	 researchers	 and	
developers	in	the	hardware	and	computer	architecture	areas	have	engaged	in	a	relentless	

 47

effort	to	optimize	designs	for	power	and	energy	efficiency.	It	is	a	fact	that	major	advances	
have	been	made	in	the	last	few	years,	ranging	from	highly	power‐efficient	semiconductor	
devices	and	circuits,	microarchitecture	structures,	on‐chip	architectural	organizations,	and	
integrated	 systems.	 Each	 layer	 is	 using	 all	 the	 tools,	 techniques,	 and	 approaches	 it	 has	
available	to	provide	the	most	power‐efficient	solution	to	the	other	layers	of	the	computing	
stack.	

It	is	crucial	to	continue	to	make	progress	in	the	area	of	power	efficiency.	Two	clear	drivers	
are	the	need	for	exascale‐level	computing	and	the	need	to	reduce	the	carbon	footprint	of	
computing.	 As	 noted	 in	 the	 DARPA–sponsored	 report,	 ExaScale	 Computing	 Study:	
Technology	 Challenges	 in	 Achieving	 Exascale	 Systems,	 timely	 advances	 in	 extreme	 scale	
computing	cannot	be	achieved	without	a	holistic	approach	to	reducing	energy.	Even	with	
aggressive	liberal	assumptions	beyond	straight‐line	ITRS	projections,	an	exascale	system	in	
the	2018	timeframe	 is	projected	 to	dissipate	67	MW,	 far	beyond	the	 tolerable	budgets	of	
interested	organizations.	Coupled	with	resilience	issues	that	are	prevalent	at	such	system	
scales	 due	 to	 the	 laws	 of	 reliability	 concerning	 such	 significant	 numbers	 of	 components,	
overcoming	the	hurdles	to	achieving	exascale	computing	will	require	a	cross‐layer	system	
approach	with	 regard	 to	 several	 factors,	 energy	being	 the	predominant	one	but	 certainly	
not	 the	 only	 one.	 	 In	 some	 sense,	 this	 challenge	 has	 already	 been	 acknowledged	 in	 the	
execution	model	 research	 that	 has	 been	 undertaken	 in	 the	 exascale	 community,	 but	 the	
research	is	very	preliminary.	

Additionally	there	are	societal	factors	that	are	becoming	increasingly	more	important.		The	
advent	of	“green	living”	has	brought	the	notion	of	carbon	footprints	to	the	forefront	of	most	
aspects	of	 life,	 and	computing	 is	no	exception.	The	amount	of	power	dissipated	by	office	
PCs	 and	 data	 centers	 is	 often	 highlighted	 in	 news	 articles	 on	 the	 environment.	With	 the	
sheer	 volume	 of	 	 electronics	 in	 computing	 platforms	 from	 handheld	 mobile	 devices	 to	
large‐scale	 data	 centers,	 	 significant	 energy	 reduction	 in	 	 global	 computation	 can	 result	
simply	by	addressing	cross‐level	power	optimization	for	a	few	key	platform	types.		

Unfortunately,	 local	optimization	within	 individual	 layers	 is	not	enough.	There	 is	only	 so	
much	 that	 each	 individual	 layer	 can	 do	 to	 improve.	 We	 are	 approaching	 rapidly‐
diminishing	 returns	 in	 this	 area.	 It	 is,	 therefore,	necessary	 to	optimize	across	 the	device,	
circuits,	microarchitecture,	architecture	and	software	systems	layers.	

Luckily,	 such	 cross‐layer	optimization	offers	major	opportunities	 for	power	 savings.	At	 a	
high	 level,	 this	 is	 because,	 classical	 designs,	 by	 focusing	 on	 optimizing	 each	 layer	
individually,	end	up	with	a	globally	sub‐optimal	design.	What	is	needed	is	an	approach	that	
provides	 the	 correct	 interfaces	 across	 layers,	 exporting	 the	 needed	 information	 to	 other	
layers	 and	 taking	 in	 information	 from	 other	 layers.	 The	 result	 is	 that,	 while	 individual	
layers	are	sub‐optimal,	the	whole	multi‐layer	design	is	optimal.	

Note	that,	currently,	we	are	addressing	the	power	constraint	problem	with	parallelism	and	
heterogeneity.	 Both	 approaches	 already	 require	 breaking	 the	 traditional	 layers	 and	
optimize	across	them.	Consequently,	we	are	already	starting	to	make	progress	in	this	area.	
What	is	needed,	however,	is	an	aggressive	agenda	for	cross‐layer	optimization.	

In	this	report,	we	present	an	agenda	for	cross‐layer	power	optimization.	We	start	by	giving	
a	few	examples	and	then	outline	the	areas	that	need	to	be	researched.	

 48

Quantitative	Targets	

We	use	data	 from	 the	HPC	 space	 in	 our	quantitative	 sketch	here.	 In	 a	mobile,	 sensor,	 or	
datacenter	type	environment,	the	exact	numbers	will	be	different,	however	the	themes	will	
be	similar.	

An	 aggressive	 estimate	 of	 the	 quantitative	 opportunity	 at	 the	 micro‐architectural	 and	
systems	layer	for	power	optimization	is	3‐5x	from	energy	efficient	chip	micro‐architecture	
and	2‐4x	from	efficient	system	design	(6‐20x	total.)	

At	 the	 micro‐architectural	 level,	 our	 opportunity	 is	 to	 eliminate	 per‐instruction	 energy	
overheads.	 	 In	 40	 nm	 technology	 running	 at	 nominal	 Voltage	 (0.9	 V),	 the	 energy	 of	
executing	 a	 double‐precision	 floating‐point	multiply‐add	 (DFMA)	 is	 50	 pJ.	 	 However,	 the	
energy	of	executing	a	single	instruction	on	a	high‐performance	CPU	in	similar	technology	is	
1.7	 nJ,	meaning	 the	 actual	 computation	 is	 only	 5%	of	 the	 per‐instruction	 energy	 and	 for	
each	 instruction,	 scheduling	 and	 data	 movement	 provides	 a	 20x	 tax	 on	 the	 actual	
computation.	 	An	energy‐efficient	throughput‐optimized	core	in	similar	technology	is	450	
pJ	per	DFMA	or	225	per	floating‐point	operation,	7.5x	more	energy	efficient,	but	still	a	9x	
tax	on	the	actual	computation	energy.		Our	opportunity	at	the	micro‐architectural	level	is	to	
attack	 this	 9x	 tax	 and	 build	 more	 energy‐efficient	 processors.	 	 We	 estimate	 that	 by	
removing	these	per‐instruction	energy	overheads,	we	could	 improve	energy	efficiency	by	
around	3‐5x	compared	to	these	current	heterogeneous	systems,	higher	if	compared	to	CPU‐
only	systems.		Additional	energy	efficiency	gains	beyond	this	factor	of	3‐5x	are	possible	by	
exploiting	fixed‐function	hardware	specialization.	

For	large‐scale	systems,	at	the	system	layer,	we	can	improve	energy	efficiency	by	removing	
overheads	and	providing	energy‐proportionality.	 	The	systems	layer	today	has	significant	
energy	overheads	above	and	beyond	what	is	provided	by	micro‐architectural	components.		
For	 example,	 while	 GPU‐based	 supercomputers	 in	 the	 Top	 500	 contain	 energy‐efficient	
GPUs	 at	 225	 pJ/flop	 (4.44	GFLOPS/Watt),	 full	 systems	 only	 run	 around	 1	 GFLOPS/Watt.		
This	>4x	 system	power	overhead	 can	be	 attributed	 to	 the	 lack	of	 energy‐proportionality	
throughout	 all	 components	 in	 the	 system,	 power‐inefficient	 heterogeneous	 system	
architecture	(discrete	CPUs	and	GPUs),	power	dissipated	in	interconnect	between	compute	
nodes,	 and	 other	 overheads	 associated	 with	 power	 delivery	 and	 cooling.	 	 Although	 the	
exact	 system	overhead	will	 vary	 from	 system	 to	 system	 (e.g.	mobile	processors	 typically	
have	 lower	overheads),	 this	 >4x	 system	power	overhead	 is	 exemplary	of	 a	problem	 that	
arises	 from	not	 treating	power	as	a	cross‐layer	problem.	 	 Integrated	systems	which	have	
taken	 a	 more	 cross‐layer	 approach	 (BlueGene,	 Anton,	 etc.)	 have	 lower	 system	 power	
overheads.	

Cross‐Layer	Examples	

Example	#1:	Low‐Power	Design	With	Emerging	Non‐Volatile	Memories	

Emerging	 Non‐Volatile	 Memories	 (NVMs),	 such	 as	 PCM	 and	 STT‐RAM,	 offer	 a	 clear	
opportunity	 for	 cross‐layer	optimization.	At	 the	device	 level,	key	 figures	of	merit	 include	
the	retention	time,	endurance,	energy	required	 for	reads	and	writes,	and	access	 latencies	
and	asymmetry	between	the	read	and	write	 latencies.	 	Based	on	the	 level	 in	the	memory	

 49

hierarchy	(caches,	main	memory,	or	storage),	the	device	properties	will	need	to	be	adapted.	
For	example,	an	NVM	for	a	storage	application	will	require	long	retention	times,	perhaps	at	
the	cost	of	access	latency,	whereas	an	NVM	for	use	in	cache	or	memory	requires	low	access	
times	but	 can	 sacrifice	 retention	 time	 (as	demonstrated	by	 [10].)	 	Managing	 the	physical	
limitations	 of	 the	 NVM	 (e.g.	 limited	 write	 endurance)	 will	 require	 optimizations	 at	 the	
circuit	and	microarchitectural	 levels.	These	 include	 the	use	of	 techniques	such	as	 coding,	
sparing,	and	wear	leveling,	which	have	to	be	designed	in	a	power‐conscious	manner.		

NVMs	can	also	influence	cache	management	and	memory	bandwidth	management	policies.	
For	 example,	 one	may	 choose	 to	 use	 a	 cache	management	 policy	 that	minimizes	 writes	
rather	than	one	that	minimizes	the	total	number	of	accesses.	The	use	of	NVMs	in	layers	of	
the	memory	hierarchy	above	storage	provides	a	new	property	–	non‐volatility	‐	that	can	be	
exploited	by	the	microarchitecture	and	software.	For	example,	non‐volatility	can	facilitate	
an	 “instant	 power	 on”	 capability	 that	 can	 be	 used	 for	 fine‐grained	 power	 management,	
either	at	the	microarchitectural	level	or	through	software	control.		

Non‐volatility	can	also	lead	to	a	blurring	of	the	distinctions	between	memory	and	storage	
and	consequently	influence	the	design	of	file	systems,	databases,	and	virtual	machines,	as	
recent	 work	 in	 this	 area	 (e.g.	 [11][12])	 have	 demonstrated.	 For	 example,	 in	 a	 hybrid	
memory	system	that	uses	a	combination	of	volatile	memory	and	NVM,	the	file	system	can	
manage	the	placement	of	data	objects	based	on	their	access	and	update	frequencies	or	data	
longevity	requirements	(e.g.	placing	temporary	files	in	volatile	memory	vs.	allocating	NVM	
space	for	persistent	data	or	logs.)		

Example	#2:	Designing	with	unreliable	silicon	

As	a	second	driving	example	of	the	potential	of	cross‐layer	optimization,	consider	scenarios	
and	 implications	 around	 the	 possibility	 of	 designing	 with	 unreliable	 silicon.	 	 Looking	
forward,	upcoming	technology	generations	may	see	less	reliable	transistors.		In	some	cases,	
silicon	reliability	will	tradeoff	fairly	directly	against	power	dissipation.		For	example,	higher	
supply	voltage	levels	or	increased	device	or	circuit‐level	redundancy	can	often	be	used	to	
overcome	unreliability	in	individual	transistors,	but	at	some	power	cost.	 	 In	general,	such	
scenarios	may	reduce	guardband	requirements.	

With	 underlying	 silicon	 unreliability	 as	 a	 possible	 technology	 trend,	 this	 case	 study	
explores	 how	 exposing	 reliability	 to	 the	 higher	 levels	 of	 the	 stack	may	 result	 in	 power‐
saving	leverage.		At	the	same	time,	it	often	requires	cross‐layer	approaches	for	percolating	
characterizations	 of	 device	 behavior	 up	 the	 stack,	 and	 information	 about	
software/application	needs	down	the	stack.			

At	the	circuit	level,	device	unreliability	may	call	for	increased	redundancy	in	circuit	designs,	
or	different	strategies	for	encoding	data.		For	data	storage,	parity	and	ECC	strategies	can	be	
tuned	based	on	 reliability	 expectations.	 	 For	both	data	 storage	and	computation,	 reliable	
and	 unreliable	 versions	 of	 modules	 might	 be	 offered,	 with	 higher‐level	 architectural	 or	
compiler	 approaches	 selecting	 which	 to	 use	 based	 on	 software	 needs.	 	 In	 on‐chip	
interconnect,	 transmission	 unreliability	 can	 be	 tolerated	 through	 protocols	 with	
checksums,	retransmissions	and	other	strategies,	including	many	drawn	from	other	larger‐
scale	networks.		

 50

Percolating	 aspects	 of	 device	 unreliability	 to	 the	 microarchitectural	 level	 offers	 further	
leverage.	 	As	 previously	mentioned,	we	 envision	 that	 in	 addition	 to	 “fully‐reliable”	 units,	
one	could	have	less‐reliable	versions	that	are	offered	at	lower	power	cost	for	error‐tolerant	
portions	of	a	computation.		For	example,	video	and	streaming	applications	may	have	some	
tolerance	 for	errors	 in	 their	data	 calculations,	 as	 long	as	errors	do	not	exist	or	percolate	
into	memory	address	pointers,	program	counters	or	other	non‐error‐tolerant	portions	of	
the	 code.	 	 (Language	 support	 for	 such	 approaches	 is	 discussed	 next.)	 Another	
microarchitectural	 approach	 to	 underlying	 unreliability	 might	 be	 techniques	 to	 launch	
several	copies	of	a	computation	down	the	pipeline	and	allow	 for	 “voting”	 to	gauge	result	
correctness.		When	reliability	is	most	important,	many	redundant	copies	will	be	used,	albeit	
at	 a	 higher	 power	 cost.	 	When	 power	matters	more	 than	 100%	 calculation	 correctness,	
fewer	redundant	copies	can	be	used.			

At	 the	 Architectural	 and	 language	 level,	 further	 adjustments	 can	 be	made	 to	 exploit	 this	
power	vs.	reliability	tradeoff.		Following	on	the	example	from	the	preceding	paragraph,	one	
will	 probably	 want	 to	 “mark”	 aspects	 of	 error	 tolerance	 at	 a	 coarser	 granularity	 than	
individual	instructions.		For	example,	in	an	image	processing	code,	the	programmer	may	be	
able	 to	 express	 a	 desired	 SNR	or	 quality	 of	 result	metric	 for	 an	 overall	 calculation	more	
easily	than	they	can	express	reliability	requirements	for	individual	lines	of	code.		This	can	
be	compiled	down	 to	reliable	or	unreliable	 threads,	or	mapping	onto	different	ALU	units	
accordingly.			

At	 the	 Language	 and	 compiler	 level,	 the	 programmer	 may	 benefit	 from	 programming	
environments	 that	 are	 less	 general	 than	 C	 or	 C++,	 in	 ways	 that	 preclude	 the	 arbitrary	
mixing	of	data	and	control.	 	For	example,	while	 it	 is	often	tolerable	to	have	a	bitflip	at	an	
arbitrary	 point	 in	 some	 image	 data,	 the	 same	 program	 cannot	 tolerate	 a	 bitflip	 in	 an	
address	pointer.	 	One	could	 imagine	hardware	 implementations	where	program	counters	
and	 address	 pointers	 are	 stored	 in	 “hardened”	 or	 higher‐reliability	 circuits	 while	 image	
data	is	stored	in	less	reliable	circuits	that	save	power.			

In	 summary,	 the	 overall	 purpose	 of	 this	 example	 has	 been	 to	 articulate	 how	 exposing	
aspects	 of	 a	 power	 tradeoff	 from	 the	 lowest	 system	 levels‐‐‐namely	 power/reliability	
tradeoffs	in	future	silicon	transistors‐‐‐may	lead	to	power‐saving	leverage	and	tradeoffs	at	
several	other	system	layers	up	to	and	including	software.		 		 		 	 	

Example	#3:	Energy‐Reducing	Cores	

As	 larger	 fractions	 of	 a	 chip’s	 transistors	 become	 dark	 transistors,	 power	 consumption	
becomes	the	dominant	limiting	resource	for	chip	design	and	operation,	more	so	than	other	
resources	such	as	total	silicon	area.	This	shift	often	calls	for	new	architectural	techniques	
that	 “spend”	 area	 to	 “buy”	 energy	 efficiency.	 One	 approach	 is	 to	 use	 this	 dark	 silicon	 to	
implement	 a	 host	 of	 heterogeneous	 coprocessors,	 each	 of	 which	 is	 attuned	 to	 the	
computation.	

In	 a	 future	 heterogeneous‐focused	 system,	 execution	 hops	 among	 these	 coprocessors,	
executing	where	it	is	most	efficient.	At	the	same	time,	the	unused	coprocessors	are	power‐	
and	 clock‐	 gated	 to	 keep	 them	 from	 consuming	 precious	 energy.	 If	 the	 specialized	
coprocessors	collectively	cover	a	large	fraction	of	the	workload,	then	the	energy	efficiency	
of	the	system	will	rise	significantly.	Alternatively,	if	the	coprocessors	are	able	to	cover	large	

 51

fractions	of	individual	applications,	we	can	enable	new	functionalities	for	the	platform.	As	
the	 amount	 of	 dark	 silicon	 area	 increases,	 chip	 designers	 can	 afford	 to	 include	 more	
coprocessors,	each	one	specializing	to	an	even	greater	degree	to	cover	a	smaller	fraction	of	
the	workload	even	more	efficiently.	

Heterogeneous	 processors	 are	 already	 prevalent	 in	mobile	 application	 processors	 in	 cell	
phones	 and	 tablets	 already	 contain	 many	 specialized	 accelerators	 for	 base‐band	
processing,	graphics,	computer	vision,	and	media	coding.	 	However,	the	performance‐first	
orientation	of	accelerators	limits	their	applicability	greatly.	In	order	to	attain	their	central	
goal	of		improving	performance,	they	typically	target	computations	that	are	highly	parallel,	
execute	 tight	 loops,	 have	 relatively	 regular	 memory	 accesses,	 and	 are	 relatively	 easy	 to	
parallelize	 into	 hardware.	 This	 focus	 on	 performance	 and	 thus	 parallel	 execution	makes	
these	 accelerators	 difficult	 to	 construct	 because	 the	 problem	 inherits	 a	 similar	 set	 of	
problems	as	parallelizing	compilers	‐‐	such	as	pointer	analysis,	and	code	restructuring.	This	
limits	the	class	of	programs	for	which	accelerators	can	be	built,	and	also	makes	the	process	
very	labor‐intensive	in	the	typical	case.	

An	alternative,	power‐first	approach	looks	at	the	problem	differently.	Typically	processors	
impart	a	10‐100x	overhead	over	the	underlying	ALU	and	memory	accesses.	If	we	abandon	
our	focus	on	increasing	performance,	but	rather	seek	to	maintain	performance	but	reduce	
energy	 we	 might	 be	 able	 to	 map	 a	 much	 larger	 class	 of	 computation	 into	 specialized	
hardware,	and	we	could	extend	our	targeted	computations	to	include	serial	computations	
in	 addition	 to	parallel	 computations.	Because	 this	mapping	would	not	 require	 the	use	of	
parallelizing	compiler	 technology,	 it	could	cover	a	much	wider	class	of	code	and	be	more	
susceptible	to	automation.	The	potential	for	energy	savings	from	eliminating	the	overheads	
of	 instruction	 interpretation	 ‐‐	 10‐100x	 ‐‐	 are	 highly	 compelling,	 and	 potentially,	 large	
portions	of	common	applications	could	be	 targeted	 ‐‐	 from	the	Web	Browser	 to	even	the	
Operating	System.	

Of	 course,	 there	 are	 a	 large	number	 of	 challenges	 in	 this	 class	 of	 system,	which	drives	 a	
need	 for	 cross‐layer	optimization.	We	need	ways	of	hiding	 the	 complexity	of	 these	 cores	
from	the	programmer;	we	need	ways	for	the	OS	to	manage	these	cores;	we	need	tools	that	
can	 scalably	 facilitate	 identifying	 and	 generating	 cores	 that	would	 be	 useful	 to	 have;	we	
need	 new	 memory	 systems	 that	 can	 be	 scalable	 and/or	 coherence;	 we	 need	 ways	 of	
ensuring	 compatibility;	 and	 also	 retiring	 cores	 that	 target	 software	 this	 obsolete.	 The	
system	 would	 need	 power‐gating	 technology	 that	 has	 ultra‐leakage	 ‐‐	 perhaps	 through	
NEMS	 or	 tunneling	 transistors;	 and	 we	 would	 need	 mechanisms	 that	 allow	 specialized	
hardware	to	stay	relevant	even	as	the	software	changes.	

Over	 all,	 the	 drive	 for	 energy	 efficiency,	 and	 the	 rise	 of	 dark	 silicon	 calls	 for	 a	 new	
perspective	on	computations	and	results	in	new	novel	designs.	These	in	turn	require	us	to	
reconceptualize	the	entire	computation	stack	in	an	energy‐first	way	to	arrive	at	new	design	
points	that	are	fundamentally	more	effective	than	today's	approaches.	

Interfaces	that	facilitate	effective	cross‐layer	optimizations	

Existing	 interfaces	 between	 layers	 (e.g.	 the	 Hardware/Software	 interface	 or	 the	 System	
Software/Hardware	 interface	 or	 the	 Application/Compiler	 interface)	 are	 rigid	 and	

 52

relatively	non‐expressive.	They	do	not	allow	enough	information	to	be	passed	across	layers	
to	 optimize	 for	 power.	 Since	 each	 layer	 is	 designed	 relatively	 independently	 of	 the	
underlying	or	overlying	layers,	significant	inefficiency	ensues.	First,	design	in	each	layer	is	
usually	over‐provisioned	to	maximize	a	local	optimization	metric	that	may	not	necessarily	
be	beneficial	 for	 overall	 system	efficiency,	 e.g.	 bandwidth	or	 latency,	 rather	 than	 a	much	
more	meaningful	global	metric	like	user‐experience,	total	cost	of	ownership,	or	end‐to‐end	
performance	and	Quality‐of‐Service	(QoS.)	Second,	usually	significant	effort	and	complexity	
is	spent	in	each	layer	to	rediscover	information	that	could	have	easily	been	obtained	from	
another	 layer.	Third,	since	 layers	do	not	coordinate	well	with	each	other	due	 to	a	 lack	of	
information,	 the	 decisions	 made	 in	 different	 layers	 sometimes	 contradict	 each	 other,	
leading	 to	 an	 overall	 suboptimal	 and	 inefficient	 design.	 For	 example,	 since	 OS‐level	
priorities	 of	 threads	 are	 not	 conveyed	 to	 hardware	 in	 existing	 multi‐core	 systems,	 the	
memory	controller	hardware	can	unfairly	prioritize	lower‐priority	applications	over	others	
(because	 it	 is	optimized	to	maximize	a	 local	metric,	main	memory	bandwidth),	 leading	to	
denial	 of	memory	 service	and	 significant	 slowdown	of	high‐importance	applications	 (see	
[13])	and	eventually	large	user	discomfort	and	energy	waste	for	the	entire	system.	All	three	
of	 these	 lead	 to	 large	waste	 in	 power.	 Finally,	 significant	 opportunity	 for	 optimization	 is	
missed	in	each	layer	because	information	needed	to	do	some	optimizations	is	missing	and	
was	 not	 communicated	 by	 other	 layers.	 This	 again	 leads	 to	 energy	waste	 and	 limits	 the	
optimizations	one	can	do	both	cross‐layer	and	within‐layer.	

It	 is	clear	 that	a	rethinking	of	 the	 interfaces	across	 layers	 is	necessary	to	enable	effective	
and	efficient	cross‐layer	information	communication	that	would	lead	to	global	optimization	
of	power	across	 the	 layers.	 In	 fact,	 such	a	rethinking	 is	necessary	and	useful	not	only	 for	
power	 optimization	purposes,	 but	 can	 also	 lead	 to	 significant	 optimizations	 and	 gains	 in	
performance,	complexity,	reliability,	and	potentially	other	optimization	criteria.	Ideally,	we	
would	 like	 to	 design	 new	 interfaces	 that	 can	 overcome	 these	 aforementioned	 critical	
shortcomings	 without	 sacrificing	 the	 benefits	 provided	 by	 simple	 interfaces	 (i.e.	 design	
productivity.)	

We	 believe	 there	 are	 several	 key	 research	 questions	 to	 address	 to	 devise	 effective	 and	
efficient	interfaces	for	cross‐layer	optimization:	

1.	What	"unifying,	cross‐cutting	principles"	should	drive	the	design	of	the	interfaces?	These	
are	principles	that	span	across	layers	to	coordinate	information	flow	and	policies	across	
layers	and	to	guide/ease	the	co‐design	and	management	of	resources	within	and	across	
layers?	

2.	At	what	granularity	should	the	information	be	communicated	between	different	layers,	
especially	the	HW/SW	interface?	

3.	How	can	we	design	the	interfaces	such	that	designers	at	each	layer	can	reason	about	the	
global	implications	of	the	optimizations	they	do	at	each	local	layer?	How	can	we	design	
the	interfaces	such	that	the	designers	in	each	layer	can	be	productive?	

4.	 What	 information	 needs	 to	 be	 passed	 across	 layers	 to	 enable	 new	 global	 power	
optimizations?	

5.	How	can	we	keep	the	interfaces	simple	and	efficient	while	at	the	same	time	making	them	
much	more	powerful	and	expressive?	

 53

6.	What	kind	of	new	 interfaces	are	useful	 to	manage	computation	and	communication	 in	
heterogeneous	 systems	 that	 employ	 heterogeneous	 computation,	 communication,	 and	
memory	components?	

7.	 Do	 we	 have	 a	 single	 interface	 that	 spans	 all	 use	 cases	 (e.g.	 mobile,	 server,	 desktop,	
sensor,	embedded)	or	do	we	design	different	interfaces	for	different	use	cases?	Can	we	
devise	general	interfaces	that	can	be	adapted	to	all	use	cases?	

Fortunately,	several	promising	research	directions	and	ideas	exist:	

1.	"Criticality"	as	a	unifying	principle	to	design	new	interfaces.	

One	key	principle	 that	 spans	across	 all	 layers	 to	optimize	power	and	performance	 is	 the	
notion	 of	 criticality.	 A	 system	 can	 be	 made	 significantly	 more	 efficient	 (both	 high	
performance	 and	 low	 power)	 if	 it	 can	 1)	 dynamically	 identify	 critical	 "tasks"	 and	 spend	
most	of	the	power/energy	to	perform	these	tasks	and	2)	spend	minimal	power/energy	on	
all	non‐critical	 tasks.	Here,	what	we	mean	by	a	 task	 is	any	unit	of	work	 that	needs	 to	be	
performed;	this	could	be	an	instruction,	a	memory	request,	a	function,	a	thread,	a	collection	
of	threads,	an	entire	application,	a	collection	of	applications,	etc.	The	principles	outlined	to	
improve	energy	efficiency	by	 taking	advantage	of	 criticality	 could	be	 fundamental	 across	
these	different	entities,	which	we	will	refer	to	as	tasks.	

Examples	of	exploiting	criticality	to	improve	performance	and	efficiency	abound,	yet	these	
examples	are	usually	specific	to	a	 layer	or	no	principled	way	of	communicating	criticality	
with	an	efficient	interface	to	enable	large	cross‐layer	optimizations	exists.	Not	all	tasks	are	
equal	‐	spend	as	much	energy	on	a	task	as	it	really	needs:	Not	all	tasks	that	need	to	be	done	
are	 equally	 important.	 For	 example,	 not	 all	 instructions	 are	 equally	 critical	 to	 system	
performance	 [14].	Not	all	network	packets	or	memory	 requests	have	 the	 same	criticality	
[15][16].	Not	all	cache	blocks	are	equally	important	[17].	Not	all	threads	limit	performance	
[18][19][20].	Not	all	queries/requests	in	a	server	need	to	be	serviced	fast.	Not	all	threads	
or	 programs	 are	 of	 the	 same	 importance.	 Not	 all	 critical	 paths	 in	 logic	 are	 exercised	
frequently	 [21].	 Recent	 research	 has	 shown	 that	 1)	 identifying	 critical	 instructions	 and	
executing	them	in	fast	pipelines	improves	both	performance	and	power	in	single‐threaded	
applications	 [22],	 2)	 identifying	 the	 slack	 of	 network‐on‐chip	 packets	 and	 prioritizing	
packets	 with	 lower	 slack	 [15]	 can	 large	 improve	 performance	 in	 multiprogrammed	
systems,	3)	 identifying	 limiter	threads	 in	parallel	applications	using	cooperation	between	
the	 hardware	 and	 the	 runtime	 system	 and	 prioritizing	 such	 threads	 in	 the	 memory	
controller	can	improve	both	performance	and	energy	[19],	4)	identifying	latency‐sensitive	
applications	 and	 prioritizing	 them	 in	 the	 memory	 scheduler	 can	 yield	 significant	
performance	improvements	[23],	5)	identifying	critical	threads	in	parallel	applications	and	
slowing	 down	 all	 others	 can	 lead	 to	 large	 power	 reductions	 [18].	 	 We	 believe	 these	
techniques	can	also	improve	other	metrics.	Many	other	such	opportunities	exist	to	manage	
resources	using	the	concepts	of	slack,	criticality,	and	latency‐sensitivity.	

Efficient	systems	should	identify	criticality	and	bottlenecks	at	different	levels	of	processing	
(circuit,	 logic,	 instruction,	 request,	 task,	 program,	 system,	 etc.)	 and	 accelerate/prioritize	
critical/bottleneck	 tasks	while	 spending	 little	 energy	 on	 non‐critical	 tasks.	 This	 could	 be	
done	by	1)	 identifying	the	"slack"	present	 in	each	task	and	2)	designing	resources	and	3)	
managing	execution	such	that	the	slack	of	every	task	is	always	as	close	to	zero	as	possible.	

 54

All	 three	 are	 promising	 and	 unsolved	 research	 directions	 that	 can	 enable	 us	 to	 develop	
novel	 "criticality	 interfaces"	 to	 largely	 improve	 the	 way	 power	 and	 performance	
management	is	performed	today.	

2.	 Interfaces	 that	 can	 enable	 designers	 to	 reason	 about	 the	 effects	 of	 their	 decisions	 on	
system	power.	Feedback/control	loops	for	effective	power	management.	

A	 critical	 research	 question	 going	 forward	 is	 to	 design	 such	 interfaces	 that	 can	 enable	
designers	at	the	higher	layers	to	reason	about	the	effect	of	their	decisions	on	global	metrics	
such	 as	 system	 power,	 QoS,	 performance.	 For	 example,	 feedback	 mechanisms	 that	 the	
software	 designers	 can	 probe	 to	 measure	 the	 effects	 of	 their	 algorithms,	 functions,	
computation	structures,	etc.	on	power/energy	would	be	very	valuable	in	designing	power‐
efficient	software,	especially	within	the	context	of	mobile	and	server	systems	where	power	
is	at	a	premium.	Similarly,	such	feedback	mechanisms	would	be	very	useful	for	the	system	
software	and	compiler	in	managing	dynamic	execution	with	the	goal	of	maximizing	power	
efficiency.	

3.	Secure	interfaces	for	exposing	and	controlling	power/thermal	sensors	and	fine‐grained	
power/thermal	management	mechanisms.	

Exposing	 fine‐grained	power/thermal	management	and	measurement	mechanisms	to	the	
higher	layers	can	significantly	aid	cross‐layer	power	optimization.	Key	research	challenges	
lie	in	doing	this	in	a	secure	fashion.	

4.	New	interfaces	for	managing	heterogeneous	execution	

Management	of	heterogeneous	resources	can	be	accomplished	using	the	concepts	of	slack,	
criticality,	 and	 latency‐sensitivity	 such	 that	 tasks	 with	 low	 slack	 and	 high	
criticality/latency‐sensitivity	 are	 allocated	 higher	 performance	 and	 higher	 power	
resources	 whereas	 non‐critical	 tasks	 are	 allocated	 low‐power	 resources	 (e.g.	
[18][19][20][24].)	 We	 expect	 a	 criticality	 based	 interface	 would	 significantly	 aid	
heterogeneous	execution.	Other	interfaces	are	also	very	much	worthy	of	research.	

5.	Coarsening	the	granularity	of	the	hardware/software	interface	

Existing	 HW/SW	 interfaces	 communicate	 information	 at	 a	 very	 fine	 grain,	 using	 simple	
instructions.	 A	 much	 more	 expressive	 interface	 can	 be	 formed	 by	 coarsening	 the	
granularity	of	communication	and	using	"blocks"	as	a	means	to	communicate	between	the	
hardware	and	software.	These	blocks	could	specify	various	information,	including	resource	
requirements	 associated	 with	 computation,	 criticality	 of	 computation,	 reliability	
requirements	 of	 computation,	 etc.	 This	 information	 can	 largely	 aid	 optimization	 at	 the	
hardware	 layer.	 A	 coarsened,	 block‐level	 feedback	 interface	 from	 the	 hardware	 to	 the	
software	can	enable	dynamic	optimizations	and	adaptation	of	policies	at	the	software	layer.	

 55

Area 4 – Systems, Applications, and Beyond

	

Area	Leader:	Luca	Benini	

Co‐Editor:	Paul	Bogdan	

Other	Area	members:	David	Andersen,	Pai	Chou,	Rajesh	Gupta,	Mark	Hill,	Benjamin	C.	Lee,	
Per	 Ljung,	 Jose	 Moreira,	 Kunle	 Olukotun,	 Viktor	 Prasanna,	 Parthasarathy	 Ranganathan,	
Vijay	Janapa	Reddi,	Steve	Swanson,	Tom	Wenisch	

Information technology (IT) has dramatically transformed the world we use to live in from
sporadic epistemological based type of communication to an extremely turbulent, to some extent,
chaotic communication environments where computing is part of our life (see the “Success
Examples in Computing Systems” textbox for a short summary of achievements in computing
systems). Nevertheless, the exponential growth in computing performance sustained by transistor
miniaturization has reached a critical point where even extremely parallel architectures cannot
reduce power consumption within a sustainable envelope (see National Research Council’s
findings [25] below).

A system can often be described as a hierarchy of independent modules, interacting across well-
defined interfaces. Cross-layer optimization implies additional state information or algorithms
can be used if additional information is provided beyond the existing interfaces. For example a
lower module can provide hints to a higher level module, and similarly a higher module can
provide requests to a lower level module. This working group diverges slightly from this
categorization and regards cross-layer power management as any cross-disciplinary mechanism
that can influence power or energy.

Along the same lines, President's Council of Advisors on Science and Technology (PCAST) [26]
advocate for an “end of performance increases in individual processors, making the use of
numerous processors in parallel systems indispensable, as well as the increasing need for system
designers to minimize power consumption and heat generation. Improving battery life and
energy efficiency can be at least as important as making devices faster”. The need for a cross-
layer (holistic and comprehensive) review of design methodologies of future computing systems
is not only required to minimize power consumption and thermal issues, but also to offer a
higher degree of robustness, reliability, and security.

Clear	Examples	of	Success	and	Failure	

We need to avoid hazardous situations [27][28][29] and build systems that we can trust and rely
on in the context of continuously changing and interacting environments. There are many
“failure examples” that would advocate for a cross-layer (cross-disciplinary) power management
and most likely computing system design. For instance, overspecialization in micro-controller-
based systems results in code that is hard to maintain, understand, or upgrade. It is tempting to
specialize the solution to each application domain, but it is costly and impractical, because most

 56

often the requirements may be just slightly different but the implementation can be very
different. Even more so, under specialization using OS is more limited and requires a platform
with a lot more resources. Another failure example is the power management in a bus-powered
wired network such as Power over Ethernet or Power over CAN (Controller Area Network).
Power managing the nodes by themselves is ineffective because the link needs to be kept on but
is expensive. Other failure examples are represented by micro-solar-powered cell phones, Java
on deeply embedded systems, automatic cloud-based sync for mobiles (e.g. iCloud). Nice idea
but in practice drains the phone battery very quickly.

Along the same lines of defective power management solutions (mostly because of a narrow-
sighted single-layer optimization approach), Android power management uses wakelocks, which
prevent some resources to shutdown of various components (e.g. screen) for some applications.
This is on top of the Linux OS, which already has proactive power management (cpu-idle & cpu-
freq). The end result is that Android applications can take wakelocks and prevent the Linux OS
power management to kick in and minimize the device power usage. Unfortunately, Android
applications exist within the Android virtual machine and there is no way for Linux to know if a
wakelock taken by an application that is currently not in focus can be overridden or not. Hence
you can have apps that dry up your battery even if they are not being executed.

 57

Another classical failure example is the overdesign to maintain unnecessary abstractions. The
guard bands used by the hardware (chip and system) designers have increased from 10% to over
60% in less than two decades with no end in sight due to increasingly unreliable and variation-
prone nano-scale Moore and beyond Moore microelectronic devices. Latest measurements show
1.8X power consumption over nominal active power and over 9X sleep power consumption
caused by increases in process variability. The situation gets worse with variations in the
operating conditions (e.g. temperature, which exponentially affects leakage). The chief reasons
for this overdesign are the abstractions needed to maintain how hardware and software designers
see the system.

Going forward to more than Moore devices including CNFET, this variation -- measured as
3xsigma/mean variation increases to 70% for 32nm CNFET devices. The basic reasons for this
variation and resulting guard bands are two-fold: as device dimensions shrink in the range of
molecular dimensions, manufacturing variations bound to become a greater portion of variability
seen across devices. Secondly, our system designs -- from devices, circuits to architectures --

National	Research	Council's	perspective	on	future	computing	systems	

Findings

•	The	 information	 technology	 sector	 itself	 and	most
other	 sectors	 of	 society—for	 example,
manufacturing,	 financial	 and	 other	 services,
science,	engineering,	education,	defense	and	other
government	 services,	 and	 entertainment—have	
grown	 dependent	 on	 continued	 growth	 in
computing	performance.	

•	 After	 many	 decades	 of	 dramatic	 exponential	
growth,	single	processor	performance	is	increasing
at	 a	 much	 lower	 rate,	 and	 this	 situation	 is	 not
expected	to	improve	in	the	foreseeable	future.	

•	 The	 growth	 in	 the	 performance	 of	 computing
systems—even	 if	 they	 are	 multiple‐processor
parallel	 systems—will	 become	 limited	 by	 power
consumption	within	a	decade.	

•	 There	 is	 no	 known	 alternative	 to	 parallel	 systems
for	 sustaining	 growth	 in	 computing	 performance;
however,	 no	 compelling	 programming	 paradigms
for	general	parallel	systems	have	yet	emerged.	

Recommendations

•	 Invest	 in	 research	 in	 and	 development	 of
algorithms	that	can	exploit	parallel	processing.	

•	 Invest	 in	 research	 in	 and	 development	 of
programming	 methods	 that	 will	 enable	 efficient
use	 of	 parallel	 systems	 not	 only	 by	 parallel‐
systems	experts	but	also	by	typical	programmers.	

•	 Focus	 long‐term	 efforts	 on	 rethinking	 of	 the
canonical	 computing	 “stack”—applications,
programming	 language,	 compiler,	 runtime,	 virtual
machine,	 operating	 system,	 hypervisor,	 and
architecture	 —	 in	 light	 of	 parallelism	 and
resource‐management	challenges.	

•	 Invest	 in	 research	 on	 and	 development	 of	 parallel	
architectures	 driven	 by	 applications,	 including	
enhancements	of	chip	multiprocessor	systems	and	
conventional	 data‐parallel	 architectures,	 cost‐
effective	 designs	 for	 application‐specific	
architectures,	 and	 support	 for	 radically	 different	
approaches.	

•	 Invest	 in	 research	 and	 development	 to	 make	
computer	 systems	 more	 power‐efficient	 at	 all	
levels	 of	 the	 system,	 including	 software,	
application‐specific	 approaches,	 and	 alternative	
devices.	Such	efforts	should	address	ways	in	which	
software	 and	 system	 architectures	 can	 improve	
power	efficiency,	such	as	by	exploiting	locality	and	
the	 use	 of	 domain‐specific	 execution	 units.	 R&D	
should	 also	 be	 aimed	 at	 making	 logic	 gates	 more	
power‐efficient.	 Such	 efforts	 should	 address	
alternative	 physical	 devices	 beyond	 incremental	
improvements	in	today’s	CMOS	circuits.	

•	To	promote	cooperation	and	innovation	by	sharing,	
encourage	 development	 of	 open	 interface	
standards	 for	 parallel	 programming	 rather	 than	
proliferating	 proprietary	 programming	
environments.	

•	 Invest	 in	 the	development	of	 tools	and	methods	 to	
transform	legacy	applications	to	parallel	systems.	

•	 Incorporate	 in	 computer	 science	 education	 an	
increased	 emphasis	 on	 parallelism,	 and	 use	 a	
variety	 of	 methods	 and	 approaches	 to	 better	
prepare	 students	 for	 the	 types	 of	 computing	
resources	that	they	will	encounter	in	their	careers.

 58

follow a methodology that seeks to optimize a design for “average” design parameters: that is,
the designs continue to be centered around mean of parametric distributions that are increasingly
spread out.

Getting into specifics, there are numerous failure examples in current computing systems such
as: Android wakelock for sleep prevention (see above), carriers preventing 3GPP quick
disconnect to minimize signaling traffic, cellular network controlled power level of mobile radio
which overrides user, Windows laptop not sleeping when lid is closed, cheap voice using Skype,
but Skype needs UDP keepa-live signals every 20s making it energy expensive, WIFI beacon
congestion, app/OS/hw/firmware often designed by separate entities, internal benchmarking
shows 2x difference in mobile handset energy efficiency between both external vendors and
internal product teams, centralized resources (e.g. shared memory coherence, multiport memory
controllers) have well-known scaling issues.

Also, the cellular network controls the power state of handsets. The high power DCH state used
for data communication has a T1 timer that changes the state to a lower power FACH state,
which in turn has a T2 timer that changes the state into an idle state. The AT&T femto
basestation is configured with a 4m T1 timer preventing handset from sleeping. Ideally the better
SNR of a nearby basestation would enable less communication energy to be used, but the carrier
configuration of a very long T1 timeout prevents the 1W radio from sleeping. If a mobile handset
is configured to check for email every 20m then the battery of a typical handset is depleted after
only 4h. Similarly, TCP is commonly used for both wired and wireless connections.
Unfortunately TCP does not distinguish between dropped packets and congestion encountered in
wireless systems. A dropped packet therefore results in a TCP slow restart significantly reducing
throughput, indicating that TCP is not optimum for wireless connections. A wireless workaround
is to use striping with multiple TCP connections to minimize the impact of a single restart.

Intel’s TurboBoost typically disabled by HPC operators because it interacts badly with
scheduling/load balancing mechanisms falls under the category of failure examples calling for a
cross-layer power optimization and management.

Modern, commercial datacenter servers are homogeneous and are not balanced to reflect the
diversity of emerging applications. Some applications have compute and communication
requirements (e.g. online transaction processing, databases) while others have much lower
communication requirements (e.g. distributed memory caching, big data analytics).
Homogeneous machine balance for heterogeneous application intensity is a failure to provide
energy-efficient computing.

With democratized access to cloud computing (e.g. Amazon EC2, Microsoft Azure), formalizing
and generalizing auto-tuning frameworks will be increasingly important. At present, the burden
of extracting performance from datacenter hardware is difficult and will become more so. Users
cannot easily determine application intensity and the required machine balance. Without
frameworks to help users extract performance from datacenter hardware, the proliferation of
cloud computing is in jeopardy.

 59

Current heterogeneous architectures cannot be programmed easily by most applications
programmers. Existing applications can no longer take advantage of the additional compute

Success	Examples	in	Computing	Systems

•	Shifting	computation	to	different	datacenters	based	
upon	the	availability	and	cost	of	power	and	cooling.	

•	iPad	getting	10	hours	of	battery	life	playing	movies.	

•	Kindle	getting	2‐3	weeks	of	battery	life	using	E‐ink.	

•	Proxy	based	systems	(Ethernetproxy,	sleep	proxy,	
sleep	server)	have	demonstrated	up	to	an	order	of	
magnitude	reduction	in	active	power	consumption	
by	systems	that	are	able	to	exploit	inherent	system	
heterogeneity,	or	introduce	heterogeneity	to	enable	
new	power	control	“knobs”.	Examples	of	these	are	
paging	radio	and	secondary	domain	processors	that	
effectively	create	new	“hybrid	power	states”.]	

•	Recent	system	implementations	(e.g.	Convey)	point	
architectural	mechanisms	that	enable	applications‐
specific	coprocessors	to	be	integrated	and	
programmed.	

•	Coordinated	application‐architecture	tuning	has	had	
success	in	big	applications.		High‐performance	
scientific	computing	has	made	advances	in	auto‐
tuning	software	frameworks	for	portability	and	
efficiency	(e.g.	linear	algebra,	signal	processing).		
Commercial	datacenters	with	a	few,	large	
applications	are	also	tuned	and	optimized	(e.g.	
Google	search	engine	is	frequently	re‐written	and	
optimized	‐‐	see	Barroso	and	Hoelzle).	

•	High‐performance	scientific	computing	robustly	
defines	machine	balance	and	application	intensity.		
Machine	balance	is	the	ratio	of	peak	computational	
throughput	(op/s)	to	communication	bandwidth	
(byte/s)	while	application	intensity	is	the	ratio	of	
computational	demand	(op/s)	to	communication	
demand	(byte/s).		Partly,	as	a	result	of	this	robust	
matching	of	machines	to	applications,	HPC	has	
successfully	navigated	the	design	space	and	chosen	
small,	energy‐efficient	cores	when	appropriate	for	
the	application	(e.g.	Blue	Gene,	Green	Flash).	

•	The	Opera	mini	browser	is	a	proxy	browser	that	
minimizes	communication	traffic,	reducing	latency	
and	communication	energy	with	slightly	degraded	
fidelity	of	content.		Similarly	incremental	precision	
(e.g.	fractal	images,	font	feathering,	image	pixelation,	
text	before	images)	allows	content	to	be	initially	
displayed	without	being	refined	if	the	user	skips	to	
another	item	of	interest.	

•	Event‐based	systems	(QNX,	tickles	Linux)	instead	of	
timer/polling	OS	

•	Arm	Big‐little	

•	Speculative	web	fetch	

•	The	backlight	of	typical	mobile	displays	is	controlled	by	
ambient	light.	This	is	significant	on	a	laptop	where	the	
display	is	the	dominant	energy	sink.	

•	Reactive	sleeping	systems	that	wake	on	events	are	both	
responsive	and	minimize	static	power.	Common	
examples	are	wake‐on‐ethernet	and	wake‐on‐radio.	

•	High‐level	abstractions	such	as	CUDA	/	OpenCL	/	
WebCL	can	compiled	to	various	hardware	platforms,	
allowing	performance	increase,	a	productivity	
increase,	and	some	portability.	Auto‐tuning	(e.g.	
Berkeley	Seijits)	has	demonstrated	that	even	expert‐
designed	libraries	such	as	FFTW	can	be	improved	
upon	by	2x;	aggregation	of	notifications,	events	

•	Berkeley	expert‐designed	"stovepipes"	templates	for	
common	parallel	design	patterns		

•	Energy	proportional	computing	where	Vdd	(sub,	near,	
super	threshold)	set	by	computational	load,	OS	
controlled	DVFS	

•	OS	synchronization	of	event	queues	

•	Positioning	using	last	known/cell	tower/wifi/	gps,		
select	cheapest	connection	(BT,	wifi,	cellular),		
piggyback	data	transmission	during	voice	call	,	burst	
transmission	of	streaming	media	enabling	radio	to	
sleep,	using	burst	of	N*Bytes	instead	of	stream	of	N	
transmissions	of	Bytes,	MIMO	radio	at	edge	of	cell,	
device2device	communication	bypassing	base	station,	
multiple	cheap	hops	in	mesh	network	rather	than	1	
expensive	hop,	W8	always‐connected,	wakes	on	
recognized	network	activity,	

•	MS	somniliquoy	low	power	process	monitors	network	

•	Cloud‐based	aggregation	/	enqueing	of	notifications,	
message	push	from	cloud‐based	notification	center,	
offloading	e.g.	Online	gaming	using	remote	processing

•	Modern	data	centers	(e.g.	Google,	IBM,	HP)	typically	
achieve	PUE	of	1.1	or	better,	through	the	use	of	
technologies	such	as	free	cooling.	On	the	negative	side,	
this	means	there	is	not	much	more	to	improve	in	that	
front.	

•	Cores	that	morph	between	ILP	and	multi‐threading	
have	been	moderately	successful	in	delivering	a	trade‐
off	between	single‐thread	performance	and	
throughput	efficiency.	

•	Warehouse	computing	designs	(e.g.	Google,	Facebook)

•	HP’s	smart	floor	tiles	and	intelligent	fan	control	‐
successfully	connecting	the	“cyber”	and	“physical”	
aspects	of	data	center	optimization.	

 60

power available in these new and emerging systems without a significant parallel programming
effort. Writing parallel programs, however, is not straightforward because in contrast to the
familiar and standard von Neumann model for sequential programming, a variety of
incompatible parallel programming models exists. Programming models are available; each with
their own set of tradeoffs. Emerging heterogeneous systems further complicate this challenge as
each accelerator vendor usually provides a distinct driver API and programming model to
interface with the device.

To overcome these challenges for future computing systems, both the National Research
Council’s and President's Council of Advisors on Science and Technology (PCAST) reports
advocate that “DoE and NSF should be major sponsors of research for achieving dynamic power
management in applications ranging from single devices to buildings to the power grid.”.

Challenges: Exemplified by the Case Studies and More

Advances in device physics and computing have led to the development of complex
multiprocessor-on-chip (MPSoC) platforms supporting a large variety of applications.
Nevertheless, future applications (e.g. big data analytics, gaming and entertainment, high-quality
interactive environments, virtual reality, business analytics, recognition mining and synthesis,
smarter planet applications, social media) will pose serious challenges for building models of
both computation and communication that later can be used for dynamic power optimization
(mapping and scheduling, on-chip traffic regulation, DVFS techniques).

Some applications are still computationally bound, most are at least equally bounded from the
memory and communication viewpoint. Hence, power management strategies focusing
exclusively on maximizing CPU energy efficiency are going to have limited impact. We need
however better ways to gauge non-CPU resources at the application level (and in application
development support tools). Memory and communication are much less carefully analyzed than
CPU usage: thus we need more advanced profiling, online monitoring and optimization tools to
maximize the energy efficiency of storage and communication synergistically with computation.

On one hand, we will have to deal with sophisticated computation over huge amounts of data.
Understanding of shortcomings of current programming models corroborated with exploitation
of exhibited patterns behind computational algorithms will be the key for establishing accurate
prediction strategies. Such prediction strategies can infer which thread is most critical, which one
will generate the highest number of memory accesses, or suggest how to deal with diversity in
data types, etc. All this information can be exploited for dynamic optimization strategies
targeting computation aspects.

However, optimizing the computation side alone cannot offer the best solution. Accurate on-chip
traffic modeling (that takes into account time-dependent and fractal characteristics of network
traffic) will be essential not only for predicting the timing requirements (network latency, system
response times) and so guaranteeing a specific QoS level but also for defining reliable/robust and
optimal dynamic optimization system strategies. Knowing or determining the right models that
describe the network traffic over certain periods of time can enable predictions about system

 61

performance and help to identify strategies to minimize latency during high load or localized
congested regions.

For instance, Virtualized environments (managed runtime environments) are getting more and
more common (VMM in servers and Android VM in mobile are most notable examples). These
environments are challenging because isolate the SW application from the actual physical
machine, and an application can run on a wide variety of different hardware, with different
energy efficiency requirements and bottlenecks. We need to define a way for applications to
exchange information with their virtual environment to help power management, but not do
directly control it (as they are not empowered to do that). Extensions to concepts such as SLA
are needed (not only in the data-center, but also in the mobile and deeply embedded, even though
it makes more sense on larger systems).

Another challenge is represented by the necessity of designing cross-layer optimization strategies
that exploit diverse methods like algorithmic transformations, dynamic control, compiler
transformations, etc. Nevertheless, how do we make sure that the complexity we add in itself
does not lead to further inefficiency? We need to somehow anticipate the rapidly changing
application market space, especially in mobile systems, and prepare future system designs
accordingly. Above all, there is great need for the right interfaces for sharing information across
different layers and various scales. We need to identify the best global objective functions that
encapsulate both performance and power consumption and their correlations between different
layers. We need to provide access to actuators, to identify the right time constants for control
purposes, to communicate information about system state that can enable accurate and robust
actuation. More broadly, we need to provide visibility to system controllers across all layers
while minimizing exchange of global information.

Related to all the above, we need to determine and define what the “perfection” would mean in
future computing systems. Having a way to reason about some bounds on least energy for a
particular task and particular architecture would help identify points of diminishing returns. We
need to learn how to exploit at runtime the consumer usage patterns and the availability of
resources.

Consolidation of workloads in a single server or installation of servers leads to higher machine
utilization and therefore better energy efficiency (more work done per $ of energy). In the
technical side, isolation, security and privacy are the biggest barriers to further consolidation.
Commercial customers are reluctant to share infrastructure with other customers. For example,
even when two customers are collocated in the same data center they often require separate and
isolated networks, storage and servers. If we could solve that problem, we would greatly increase
the demand for cycles in a shared environment. Consider the case of Dreamworks, as presented
in SC11 (http://sc11.supercomputing.org/schedule/event_detail.php?evid=mswk113). Most of
their rendering is done a few months before the release of a new movie. If they had access to
more computing power on demand they would have more freedom of schedule to release their
movies (significant market opportunity) and would not need as big of a proprietary server farm.
In addition, rendering is a perfect example of a background workload that can be used to fill
empty computing cycles. However, it is easy to see that those computations are highly
confidential as Dreamworks does not want their frames leaking.

 62

Cross-layer power optimization and management should guarantee optimal power values. For
instance, it is hard to manage the power consumption of a sensor network system that consisting
of a large number of nodes interconnected via wired or wireless interfaces. More precisely, it is
hard to coordinate multiple nodes because it is expensive to keep the links alive for inter-node
communication. A similar optimization challenge is represented by power distribution across a
locally networked system (e.g. power over Ethernet, power over Controller Area Network). Main
stream research doesn't usually discuss the energy efficiency of such systems because they are
invented for convenience of connection and not for energy efficiency. Nevertheless, a large
fraction of power can be lost on the power transmission line. This is cross-layer because it
bundles supply power level with network protocol level and system-level power (consumption)
management.

Along the same lines of a holistic approach is represented by the significantly high power values
of mobile devices A typical smartphone handset has a 5Wh battery but barely lasts one day
before it is recharged, resulting in an average power of 200mW. The static power of a phone
with all notifications turned off is about 20mW comprises the radio modem (about 5mW),
memory refresh, and any OS idle tasks. The static power with typical notifications (email,
Skype) turned on varies from 50-150mW depending on the model. Worldwide quantitative
measurements by Nokia show that static power typically consumes 50% of the battery energy.

Additionally, from a security point of view, we need to deal with bad or greedy “non-trusted”
controllers and identify strategies to avoid malfunctioning or malicious attacks that can render
system integrity in part or as a whole. It is imperious necessarily to exist a cross-layer analysis
such that such dynamic control is done in an optimal way via both hardware and software means.

Getting now into more details, cross-layer specialization introduces a fundamental tension
between power and expressiveness, on the one hand, and complexity and coupling on the other.
The compelling power savings advantages of cross-layer optimization must be balanced by the
substantial big-picture system challenges they introduce: Engineering has long relied upon
strong separation of modules and concerns in order to facilitate independent development,
testing, and failure and performance isolation. A major question that research should address is
how to walk the line between these two ends.

Moreover, there is a need for the right balance between the level of abstraction needed versus the
operational efficiency. This balance may shift dynamically (e.g. multi-radio interfaces).
Developing the right application level abstractions that enable programmers to develop
functionality and reason about their application performance without burdening them with the
details of the underlying architecture features is also very important.

Layers were established to manage complexity by having interfaces to implementations that are
“black boxes.” How do we peek into boxes without unduly making interfaces complex and
exposing implementation aspects that may then constrain future implementations. One option is
using so-called “grey boxes” where one enters implementation attributes by probing rather than
widening the interface.

Managing the tension between abstraction and cross-layer management will not be an easy task.
Some examples may include the network stack abstraction, the division of the architecture into

 63

multiple components each individually designed, etc. In addition, performing a collaborative
cross-layer optimization that would enable system scaling is of great demand for future
computing systems. For instance, a cloud datacenter can often have millions of moving parts and
cross-layer collaboration across such a large ensemble that could have to deal even with dynamic
availability is going to be a big challenge [30][33].

A natural introspection would be if we can alleviate some of this tension by statically
“compiling” or “pre-optimizing” applications across the boundaries. Systems already do “pre
linking” to reduce dynamic library load time (they assign each library a fixed virtual address for
loading and then pre-link all the other libraries against it). If we restricted (or provide a way to
clearly specify) how components fit together, we could aggressively optimize across layers, and
preserver (or less the impact on) the expressive interfaces that are so valuable. Sacrificing
programmability or even requiring large-scale changes to existing interfaces is going to be a
tough sell. Ultimately, programmers care more about productivity that saving power.

In addition to all the above, we need to consider the problem of finding the right architecture that
allows for an optimal cross-layer coordination and optimization. Hierarchical seems to be the
general approach, but should we be looking at federated peer2peer architectures? While
distributed architectures are likely the way to practical realization, what do we leave on the table
compared to a perfect “global-knowledge” centralized controller? On a related note, how do we
determine the perfect division of labor -- across hardware and software, across platform and
cluster, and so on? All such questions are becoming even more important when considering the
power optimization while dealing with heterogeneity in both hardware and software domains.

One way to address the heterogeneity issue is to rely on compilers and static analysis. Static
analysis adds less energy/power overhead to managing power consumption and can be more
aggressive / computationally intensive because it can be done offline. For instance, one can
examine an application to identify regions that are a good / efficient match for the system
heterogeneous resources. There are a variety of techniques that would enable this analysis. The
simplest is identifying calls to hardware supported/accelerated libraries. Using pattern-based to
identify common sequences of calls to libraries (there’s been some software engineering work
along these lines that specifies valid sequences of library calls. For us, the question is not “valid”
sequences, but sequences that are amenable to a particular heterogeneous resource). Another tool
for dealing with heterogeneity is to use graph-based similarity / isomorphism / pattern matching
techniques to identify code regions that are amenable to a particular type of resource. These
kinds of analysis could be combined with a load time/install time binary conversion to allow for
transparent utilization of heterogeneous resources. A changing pool of heterogeneous resource
could be continuously matched against annotations on running program to identify opportunities
for utilizing newly available resources. Nevertheless, these are not the only options.

Alternatively, to deal with various types of hierarchies and heterogeneity we need to design
online learning strategies that can profile / monitor both application and architecture figures of
merits and decide on the fly whether to turn off or allocate more resources for energy efficiency
or any other form of re-configurability. Nevertheless, there is a need for identifying the best
profiling aids or the right system metrics (energy per operation, GOPS). One other challenge
would the scale at which profiling should take place and what tools should be used to reduce its

 64

overhead. There should be a trade-off between fine-grained and coarse grained which might be
dictated by both application and architecture features.

Cross-layer collaboration requires co-designing and coordination across different disciplines.
Providing the right educational frameworks to enable the next generation of researchers to
embrace cross-disciplinary research is very challenging. Future research and education
curriculum need to address challenging questions such as: How do we get the average
programmer to understand power constraints and program accordingly? Is it through tighter
integration of research in the classroom? Should we still start and extensively teach, analyze and
scrutinize sequential computing or jump much earlier into parallel world of computing? Wide
distribution of easy-to-use tools that measure or simulate the energy costs of computation and
communication are needed before the developer can explore alternative implementations. One
example limited to Nokia mobile phones is the Nokia Energy Profiler which graphically shows
power correlated with cpu activity, cpu frequency, packet transmissions, radio state, and display
state.

The interdisciplinary nature of cross-layer optimization creates practical challenges in funding
and publishing the research. NSF should seek mechanisms (e.g. perhaps joint programs with
ENG) that ease the challenge of funding projects that span mechanical, materials, electrical, and
computer science aspects of CPOM. Moreover, research publication venues that encourage
cross-disciplinary research will also be important.

Opportunities Across Layers

On one hand, the hardware cannot perform power optimization alone. For power optimization
purposes, software need to continuously adapt based on inferences about the input or application
to be executed. On the other hand, the application cannot perform power optimization alone
either. Several reasons are the lack of global visibility; programmer effort and competence
required, lots of hardware-specific behavior that it would have to adapt to and understand.
Nevertheless, adopting maybe the “gray box” paradigm would mitigate all the above and open
the avenues for truly cross-layer power optimization and management.

There are good reasons in following this idea. Intuitively, eliminating the middlemen is always
more efficient! The prior work in this area that have looked at piece-wise cross-layer
collaborations (many listed in first section) have, time and again, shown the potential from this
approach.

It is possible to (automatically) configure and customize manufactured hardware to individual
systems and even to dynamic operating conditions through a software stack that can adapt to an
individual system and its components through adaptive instruction sets, compiler optimizations
and runtime monitors. This capability is possible by making the micro-architectural design and
architectural interfaces between software and hardware more transparent. No longer will the
data-sheet be sufficient (or even necessary) part of system design optimization. Just as
instruction-level cycle-counting became irrelevant to software delay estimation in the face of
increasingly non-deterministic execution hardware, an increasingly variable hardware forces us
to rethink the contract between hardware and software in an era where software is increasingly
becoming “reflective” of the environmental needs in embedded computing environments.

 65

Along these lines of thinking, we require a managed runtime layer that is dedicated for power
management. This layer should co-exist harmoniously with other system software. Its job should
be to continuously monitor execution, and dynamically tailor the execution of different program
threads’ code to meet application and system-level power, performance and reliability
constraints.

Recent advances in circuit-level designs -- notably, Razor, EDA and TRC -- have shown that it is
possible to respond to path delay variations in a manner that systematically captures dynamic
errors in computation, tune the supply voltage and/or borrow time from the clock to ensure the
circuit remains operational and is an energy-efficient by directly reducing the voltage margin and
the timing guardbands. Going further up the hardware/software abstraction stack, recently the
programming language community has devised “decompose, calibrate and acceptance” tests
(through principled approximation, [31], and Probabilistic accuracy bound and early phase
termination [32]) that shows feasibility of reliable/recoverable computation that minimize energy
use. At an even higher level of abstraction, it is possible to build functions and applications (e.g.
using the notion of algorithmic noise tolerance or ANT) that provide for use of a “relaxed”
acceptance criteria that enables use of a higher level semantic information to mitigate the effects
of uncertainty in computation.

In contrast to recovery mechanisms for occasional faults (e.g. Razor, TMR), stochastic
computing functions with continuous significant faults. By relaxing the fidelity of the computed
results, such a mechanism can be adaptive to process, voltage, temperature and aging effects for
DSP style algorithms.

The ANT work leading up to SSNOC, SoftNRM, VASCO and ERSA have shown it is possible
to exploit the structure in errors to improve reliability. The results have shown 3X gain in energy
efficiency in DSP applications. The next step is to introduce variability monitors in software that
enable dynamic optimization of binaries to adapt the computation to process variations, aging
and temperature conditions using appropriate sensors that are embedded in the physical
computation substrate and expose compact “hardware signatures” to the software. This in turn
presents challenges for the system software stack to opportunistically exploit the variability, such
as where in the software stack the control should be done and how should the contract between
the application and the OS and compiler be redefined to enable variability to be exploited for
power optimization.

 66

Possible benefits

As emphasized in Section 2, before dwelling into the possible benefits of a cross-layer power
optimization and management (CPOM) approach, there are many issues that should be
addressed. For instance, it is unclear whether the metrics we have today are sufficient to evaluate
the benefits of CPOM. Also we need to identify to what degree we need to rely on hardware and
software solution from the system optimality point of view. Nevertheless, all such questions and
many stated in more details in Section 2 provide strong basis for believing in significant benefits
for CPOM.

One possible benefit could be the significant gain that can be obtained by crossing into power
supply and energy storage layer. Depending on the duty cycle, distance, scale, it can be 10x-100x
in energy savings.

Furthermore, exploiting higher communication bandwidth than consumption throughput allows
burst transmissions, enabling the radios to sleep reducing overall power. For example a single
large burst can use considerably less power than the same amount of data sent in smaller
fragments. Burst transmission for sleeping wifi [35]) can also help at mitigating the power
consumption values.

Other motivating examples showing the benefits of a CPOM approach are represented by Arm
Big-Little (400 pJ/op vs. 1000 pJ/op), proxy browser (1J vs. 4J), 2x piggybacking (1W v 2W),
50x offloading onlive gaming (2W vs. 100W), positioning (1s vs. 10s), Berkeley seijits auto-
tuning shows 2x improvement over expert-library FFTW.

By adopting an end-to-end approach about actually usage and relying on a CPOM approach, one
can get 10x benefits in power or energy values. For instance, a mobile device can briefly use
32W even if it is in 2W package, as long as its computation duty-cycle is low, as it is in many
emerging uses [36]. We fully expect more opportunities like this.

Embracing the CPOM methodology is also needed for coordination in distributed systems or
sensor networks. For instance, there have been some efforts that looked at coordinating the time
at which sensor measurements are taken on sensor nodes -- so that if you have two processes that
each want to read the GPS, it only warms it up once.

All in all, CPOM could not only change the abstraction models or the current design algorithms,
but by making the systems more energy efficient could indeed make them more pervasive in
many societal fields.

Possible approaches (key ideas, promising areas that should be investigated)

For building successful CPOM methodologies we need to rely on intelligent and accurate
mathematical relationships between power, performance and reliability. This calls for a
rethinking of hardware/software interfaces, re-defining in a holistic manner the storage /
memory hierarchy from the disk to the cache, and new software execution models better tailored
to emerging hardware trends (with reduced software bloat). Researchers have been harping on
power efficiency by identifying lulls in program behavior. However, we need much more
aggressive techniques where we intelligently make trade-offs with the level of reliability that is

 67

required within an application. In addition, although ignored mostly by previous and current
approaches, there is a great need for new metrics that quantify “end-user experience” (mobile
space) and workload service-level agreements (in the enterprise space). Ultimately the better we
understand the intent behind how computers are used and communicate that effectively across
the layers, the more energy-efficient we can get.

 One possible approach is to consider auto-tuning, self-calibration and self-regulation, together
with higher abstraction levels (OpenCL, WebCL) integrated or merged in with operating system.
For instance, while now the OS deals with the GPU resource as an IO device, we would rather
prefer that the future OSes will treat it as an implicit part of its resource pool.

In-situ energy/power measurements and the information availability across different layers can
enable the self-calibration, feedback control of the entire system toward minimum power
consumption values. Depending on the nature and characteristics of the application, it will be
possible to propose adaptive systems that exploit the QoS tradeoff between fidelity and energy.
In addition, relying on accurate mathematical analysis of either the historical location patterns or
prediction mechanisms for speculative pre-fetching can also contribute to lower energy
consumption and possibly better performance.

Platform-specific cross-layer approaches

Deeply	embedded	
Direct 3D stacking of sensors, solar cells, batteries, and microcontrollers creates an opportunity
for tight integration of power management. An example of this is the millimeter cubed computer
system from Michigan [37].

Continued development of coordinated communication and computation in meshes of sensor
networks for the Internet of Things is warranted.

Another example of cross-layer approach is the need for lightweight mechanisms that enable
remote in-field reprogramming, supported by a powerful cloud back-end. CPOM approach will
also prove crucial for the design of efficient convertors (dc-dc).

Along the lines of energy efficiency, there will be a need in both embedded and mobile platforms
for optimal strategies that partition applications between client, local offloading, and remote
cloud offloading while balancing local battery power usage, throughput, and responsiveness.
We need programming tools to make this easier and rigorous ways to reason about how an
application can be partitioned, as well as tools to investigate QoS of selected partitioning.

Mobile	
Regarding the mobile specific cross-layer optimization, there is an urgent need for refactoring
from mobile to cloud such that we minimize both static and dynamic power. The power of an
idling mobile device is significant since it periodically activates its transmitter to poll for new
notifications. Exploiting local resources using OpenCL / WebCL is in its infancy. Mechanisms
to share computation and communication costs across client, local and remote resources need to
be developed. Ideally a framework would make this available to non-specialized application
developers, simultaneously reducing energy and reducing development efforts.

 68

It will be desirable to push the power management goals beyond 1 day battery life to enable
high-value always-on applications, achieve a better form factors, reduce size, weight, cost, and
thermal. In addition reducing the radiation profile may be beneficial if it is found to be
detrimental due to health related issues.

Enabling always-on applications will require ultra low power sensors, communication,
computation fabrics. Efficiently exploiting heterogeneous resources will be necessary to span
always-on applications such as low-priority background notifications, immersive user interfaces,
and augmented reality. Hibernation of distributed operating systems running on different
resources may be necessary for an efficient implementation, where a cheaper module triggers the
fast resumption of a heavier module. The tradeoffs of moving computational state between
different resources (e.g. Arm Big-Little, Nvidia 1+4 Tegra) compared to a distributed
architecture are unclear with respect to ease of development, deployed size, and energy
efficiency.

Exploiting dark silicon has been proposed to offload particular functions to efficient conservation
cores to reduce power (rather than accelerators which try to improve throughput). It is presumed
that the activity level of these conservation cores is low, which results in a larger die but low
thermal budget. However given the price sensitivity of mobile handsets, it is unclear if
conservation cores are economically viable. Further work identifying the tradeoffs between
acquisition cost of expensive resources versus cheaper operational costs are warranted.

Since the mobile is energy limited, different performances may be desired depending on the state
of charge. For example if only 20% of battery capacity remains then high power tasks may be
run less often or with less fidelity, enabling basic communication to be maintained to an empty
battery.

All the above cannot be done without a good understanding of the behavior of emerging
application and the mobile user preferences. Applications and OS are not the only ones subject to
optimization in this context.

With recent advances in technology and the possibility to develop circuits that can detect motion
and convert it into energy, it will be beneficial to enhance future mobile devices with
methodologies that harness all types of energy generation resources (kinetic, temperature,
chemical, sound).

Relying on good metrics for measuring user experience and satisfaction are even more needed in
the context of mobile platforms. Consider the user’s demand for responsiveness when deciding
how much power to invest in a particular computation. E.g. when the phone is in someone’s
pocket, compute slowly. When a user is staring at the display, make UI update go faster. This is
cross-disciplinary in that it requires thinking jointly about power management, mathematical
tools and human-computer interaction.

Server	
The most important motivation for power management is to allow more compute capability to be
deployed within a given facility (i.e. more computation within a fixed number of watts). A
secondary goal is to reduce the operating cost (energy) per compute operation. There are many

 69

alternatives that need careful investigation. For instance, resource sharing and disaggregation can
reduce per-server over-provisioning. Also, we need to rethink the power distribution
infrastructure to eliminate voltage conversion steps. This approach can be applied both to data-
center wide distribution, power supply within the box, and voltage regulation on chip. Moreover,
we need to redefine the stacking of memory systems and processors to reduce memory system
energy requirements. We can improve energy efficiency by replacing spinning media with
alternatives. However, in doing so, we must consider life-cycle costs (e.g. do the added energy
costs of exotic materials in new storage devices outweigh operational energy advantages over the
life of the device?)

Nevertheless, power management cannot be done without a systematic treatment of the
uncertainty and variation existing in the system due to the application set and data input
dynamics while still enforcing a certain level of performance.

Making efficient use of heterogeneous compute infrastructure (e.g. “wimpy” and “hefty” nodes
in the same mix) can improve energy efficiency, but requires, e.g. identification of sequential
bottlenecks (particularly for same-chip heterogeneity), straggers (multi-machine heterogeneity),
multi-version compilation and tuning, etc.

Along the same lines, by exploiting the heterogeneity that comes from the application side (i.e.
assuming that an application expresses its requirements to the hardware in terms of number of
transactions per second) we can reduce the power consumption values.

Gaps and Potential Benefits

As emphasized in Section 2 and Section 3, there are many great challenges ahead of CPOM, but
also potential benefits. It is well known that some applications could be beneficial to society, but
we cannot implement them because energy consumption is not affordable. Examples of
applications being prohibitive from an energetic point of view may include: advanced health
informatics, enhanced virtual reality, advanced personalized learning, engineer tools for
scientific discovery (e-science). In all these cases, the computing systems require more compute
performance per unit of energy consumed.

CPOM needs to educate researchers to consider using non-traditional frameworks (e.g. map-
reduce, openCL, etc.) in all platform levels. At the same time hardware is also changing (end-of
Moore’s Law, the era of architectural innovation, and non-CMOS technology innovation). We
are in an era of forced changes where we can use electrons to compute, ions for storage, photons
for communication! Consequently, the relevance of CPOM is not at all questionable.

Maybe the biggest sources of inefficiency are the layers of abstractions we made to make the
design complexity more affordable. We need CPOM to go across the layers to recover some of
these inefficiencies. We need quantitative examples of software abstractions that have multiple
orders of magnitude. ASICs represent the squashing of the abstraction stack whereas the gap
between ASIC and Python implementations represents the potential for cross-layer optimization.
We need abstraction tunneling provided by CPOM to recover the energy efficiency losses
created by multiple “isolated” abstraction layers.

 70

We believe that CPOM will help at reducing the thick levels of abstraction and enable the
vertical re-engineering for energy efficiency. This implies a holistic analysis (e.g. engineering
the Gmail system, revising the Java virtual machine in Android) of cost metrics across all layers.

It is not reasonable to expect that end application programmers can manage CPOM, but that
instead middleware can support this (example - Websphere – all recovery mechanism is in the
middleware, incorporated into the framework). For instance, we can introduce energy-awareness
features in application-building engines (e.g. Google applications). Researchers developing
middleware can introduce something in the application framework to identify latency, vs.
throughput computation, vs. specialized computation. One way to do this is to specify
responsiveness (or precision or refresh rate) requirements for programmer’s code at a fine grain
so that the runtime system can make decisions. Possibly it will help to provide a framework to
specify utility functions (by the application developer) and then the middleware framework
implements policies and makes the final decision.

Another important gap that needs to be overcome is related to the fact that local cross-layer
optimization can create inadvertent cross-coupling between components. Also, CPOM
virtualization emphasizes the tension between abstraction, speed of deployment, throughput, and
energy efficiency. A CPOM research agenda should take into account the risks created by these
tensions.

Research Opportunity with Applications and System Focus

Co-designed algorithms and architecture, specifically focusing on data movement and compute
offloading. The cross-layer issues primarily stem from iterated design across hardware and
software. This is a great time to attempt such a redesign since we have a unique confluence of
expected changes in the hardware and software that enable such designs. Also a CPOM approach
would help at building dynamic models and incorporate features and effects specific to certain
devices (e.g. spintronic). Dealing with fractality, correlation, strong variability, non-stationarity
within dynamic optimization framework has not been addressed by previous computer science
methods and methodologies and those will play a crucial role for the design of future computing
systems. We can exploit fractality to overcome complexity challenges.

Rethink the supply side in a distributed system. We are used to have stable supply of power (AC;
DC etc.)., but as we get in harvesting and renewable, we need to start thinking that supply is not
reliable and needs local buffering and transmission of power. In this context, the cost of
communication for coordination is sometimes not affordable. This has not been done before and
is totally hidden by an idealized power supply “abstraction”. It will be useful to expose broader
degrees of freedom.

Models and methods for special temporal variability, for application specific operation. The need
for abstraction layers is foreseen to solve variability issues. This has not been done before for
various cultural reasons. For instance, specifications given by HW to SW designers are
considered as sacred, while in reality every HW system is “different” because of variations. By
ignoring this you leave a lot of “personalized” optimization on the table.

 71

Propose strategies for efficiently using accelerators in a virtualized environment. Regarding the
cross-layer perspective, the investigation of low-level HW mechanisms that play well with the
SW level that sits on top. The benefit of accelerators is because silicon has slowed down and
with dark silicon the cost of accelerators is now more affordable.

Design and deploy heterogeneous server architectures (processing, memory networking storage).
Regarding the cross layer perspective, it is interesting to look into how much heterogeneity you
need and want up to the SW or how applications contend to the resources (i.e. application
intensity vs. machine bounds). This has not been done before since previous work has focused on
homogeneous environment for strong determinism performance guarantees.

Optimizing across layers designed and implemented by multiple vendors is extremely difficult.
For instance a mobile device from a first vendor may contain SoCs and firmware from a second
vendor, an OS from a third vendor, and apps from additional vendors. Typically these
deliverables include proprietary information, and are not shared among other vendors.
Identifying cross-layer opportunities is therefore extremely difficult since it is not possible to
inspect different layers. As a result, higher layers cannot provide hints to lower levels for
particular use cases with lower energy. In most cases, the user of the higher layer first has to
identify a use case that can be optimized, and then contact the vendor of the lower layer to
confirm the problem, and together work towards designing a cross-layer optimization. Defining
and implementing such cross-layer optimizations requires coordination among 3 or more parties.
In some cases a vendor can draft a proposed cross-layer API which a second vendor implements
under contract. As a result, there is limited opportunity for design exploration by the greater
community. Developing easy, robust mechanisms to facilitate automated cross-layer interfaces
would be important.

Improve computation efficiency by consolidation (utilization and less redundancy). Regarding
cross layer perspective, because it needs several levels (e.g. security), it is essential to find
commonalities across several levels. Although the consolidation problem has been addressed in
previous studies (e.g. workload consolidation), the tension between isolation and consolidation
(achieving consolidation while providing the “illusion of isolation”) and computational
redundancy elimination are still not well or in a comprehensive manner explored.

Domain specific compiler framework that enables to take a specific application and the
abstraction that can be used by others. The goal is to generate specialized architecture and make
it easier to target software to heterogeneous HW. This is a difficult problem – at the junction of
huge heterogeneity and we need a solution. No one has looked at this approach, as in the past
there was a search for generality.

Co-designed algorithms and architecture. Regarding the cross layer perspective There is
opportunity for approaches for HW and SW iterated design. Have all these changes happening at
the same time, makes it hard and so it was not done before as there were shortcuts.

Top down understanding of characteristics of emerging new applications – browser as the
number one application (and application container for mobility). Regarding the cross layer
perspective, There is interest in a vertical optimization top down from application to the HW.

 72

This has not been done before; standard have been changing a lot recently to meet demands of
end users, to browsers are a new beast.

Synthesizing special purpose hardware for code that is not accelerable. Regarding the cross layer
perspective, we need to start from the software, identify which are the software sections that are
important, squash to HW and then orchestrated the triggering with a runtime system. This has
not been done before because dark silicon has not existed before.

Deep application specific case studies medical imaging platform. Regarding the cross layer
perspective, there is interest to cut across the whole abstraction layer and investigate case studies
to show convincing results with a quantification and clear advantage. This has not been done
before because only recently we have algorithms that are computed limited, and only now we are
within one order of magnitude for a handheld platform.

 73

References	
[1] D.	Shin,	Y.	Kim,	N.	Chang,	and	M.	Pedram,	"Dynamic	voltage	scaling	of	OLED	displays,"	

Proc.	of	the	48th	Design	Automation	Conf.,	Jun.	2011.	
[2] M.	Dong,	K.	Choi,	and	L.	Zhong,	"Power	modeling	of	graphical	user	interfaces	on	OLED	

displays,"	Proc.	of	the	46th	Design	Automation	Conf.,	July	2009.	
[3] H.	 Yu,	 L.	 Zhong,	 A.	 Sabharwal,	 and	 D.	 Kao,	 "Beamforming	 on	 mobile	 devices:	 a	 first	

study,"	Proc.	ACM	Int.	Conf.	Mobile	Computing	and	Networking,	September	2011.	
[4] S.	 Chakradar,	 M.	 Sankaradas,	 V.	 Jakkula,	 S.Cadambi.	 “A	 dynamically	 configurable	

coprocessor	for	convolutional	neural	networks,”	ISCA	2011,	pp.	247‐257.	
[5] Special	 Session	 on	 Brain‐Inspired	 Architectures:	 Abstractions	 to	 Accelerators,	 ICCAD,	

2011	
[6] C‐Y.	Tsai,	Y‐J.	Lee,	C‐T.	Chen,	L‐G.	Chen.	“A	1.0TOPS/W	36‐Core	Neocortical	Computing	

Processor		with	2.3Tb/s	Kautz	NoC	for	Universal	Visual	Recognition,”	ISSCC	2012.	
[7] M.	 Suri	 et	 al.	 “Phase	 Change	 Memory	 as	 Synapse	 for	 Ultra‐Dense	 Neuromorphic	

Systems:	Application	to	Complex	Visual	Pattern	Extraction,”		IEDM	2011.	
[8] B.	Smith,	E.	Ruetsche,	and	B.		Michel,	“Toward	zero‐emission	data	centers	through	direct	

reuse	of	thermal	energy,”	IBM	Journal	of	Research	and	Development,	May	2009.	
[9] C.	 Li,	W.	 Zhang,	 and	C.B.	 Cho,	 “SolarCore:	 Solar	 energy	driven	multi‐core	 architecture	

power	 management,”	 Proc.	 of	 the	 IEEE	 17th	 International	 Symposium	 on	 High	
Performance	Computer	Architecture,	2011.	

[10] A.	Nigam,	C.W.	Smullen	et	al.	“Relaxing	Non‐Volatility	for	Fast	and	Energy‐Efficient	
STT‐RAM	Caches,”	Proc.	of	HPCA,	2011.	

[11] E.	B.	Condit,	J.	Nightingale,	C.	Frost,	E.	Ipek,	B.	Lee,	D.	Burger,	and	D.	Coetzee.	“Better	
i/o	through	byte‐addressable	persistent	memory,”	Proc.	of	SOSP,	2009.	

[12] J.	 Coburn,	 A.	 Caulfield,	 A.	 Akel,	 L.	 Grupp,	 R.	 Gupta,	 R.	 Jhala,	 and	 S.	 Swanson.	 “NV‐
Heaps:	 Making	 Persistent	 Objects	 Fast	 and	 Safe	 with	 Next‐Generation,	 Non‐Volatile	
Memories,”	Proc.	of	ASPLOS,	2011.	

[13] T.	 Moscibroda	 and	 O.	 Mutlu,	 "Memory	 Performance	 Attacks:	 Denial	 of	 Memory	
Service	in	Multi‐Core	Systems,"	USENIX	Security,	2007.	

[14] B.	 Fields,	 et	 al.,	 “Focusing	 Processor	 Policies	 via	 Critical‐Path	 Prediction”	 Proc.	 of	
ISCA,	2001.	

[15] R.	Das	et	al.,	“Argia:	Exploiting	Packet	Latency	Slack	in	On‐Chip	Networks,”	Proc.	of	
ISCA	2010.	

[16] E.	 Ebrahimi	 et	 al.	 “Prefetch‐aware	 shared	 resource	 management	 for	 multi‐core	
systems.”	Proc.	of	ISCA,	2011.	

[17] M.	K.	Qureshi	et	al.,	“A	Case	for	MLP‐Aware	Cache	Replacement,”	Proc.	of	ISCA,	2006.	
[18] A.	 Bhattacharjee	 and	 M.	 Martonosi.	 “Thread	 criticality	 predictors	 for	 dynamic	

performance,	power,	and	resource	management	in	chip	multiprocessors.”	Proc.	of	ISCA,	
2009.	

[19] E.	Ebrahimi,	et	al.	“Parallel	Application	Memory	Scheduling.”	Proc.	of	MICRO,	2011.	

 74

[20] J.	 A.	 Joao,	 M.	 A.	 Suleman,	 O.	 Mutlu,	 and	 Y.	 N.	 Patt.	 “Bottleneck	 identification	 and	
scheduling	in	multithreaded	applications.”	Proc.	of		ASPLOS,	2012.	

[21] D.	Ernst,	et	al.,	“A	Low‐Power	Pipeline	Based	on	Circuit‐Level	Timing	Speculation,”	
Proc.	of	MICRO,	2003.	

[22] B.	Fields,	et	al.,	 "Slack:	Maximizing	Performance	Under	Technological	Constraints",	
Proc.	of	ISCA	2002.	

[23] Y.	Kim	et	al.	“Thread	cluster	memory	scheduling:	Exploiting	differences	in	memory	
access	behavior.”	Proc.	of	MICRO,	2010.	

[24] M.	A.	Suleman,	O.	Mutlu,	M.	K.	Qureshi,	 and	Y.	N.	Patt.	Accelerating	critical	 section	
execution	with	asymmetric	multi‐core	architectures.	Proc.	of	ASPLOS,	2009.	

[25] National	 Academies	 Press	 (2011.)	 The	 Future	 of	 Computing	 Performance:	 Game	
Over	or	Next	Level?	(available	at	http://www.nap.edu/catalog.php?record_id=12980)	

[26] PCAST	 Report	 entitled	 “Designing	 a	 Digital	 Future”,	 (available	 online	 at	
http://lazowska.cs.washington.edu/nitrd/)	

[27] Australia	 probe	 into	 iPhone	 'fire'	 on	 plane,	 BBC	 News	 (available	 online	 at	
http://www.bbc.co.uk/news/world‐asia‐15932846)	

[28] Man	 Claims	 Droid	 2	 Smartphone	 Exploded	 in	 His	 Ear,	 (available	 online	 at	
http://www.wired.com/gadgetlab/2010/12/droid‐explosion/)	

[29] Exploding	 laptops	 prompt	 Dell	 battery	 recall,	 The	 Telegraph,	 (available	 online	 at	
http://www.telegraph.co.uk/news/1526424/Exploding‐laptops‐prompt‐Dell‐battery‐
recall.html)	

[30] L.	A.	 Barroso	 and	U.	Holzle.	 2007.	 “The	Case	 for	 Energy‐Proportional	 Computing.”	
Computer	40,	12,	December	2007.	

[31] W.	 Baek	 and	 T.	 Chilimbi,	 “Green:	 A	 System	 for	 Supporting	 Energy‐Conscious	
Programming	using	Principled	Approximation,”	Microsoft	Tech	Report,	2009.		

[32] M.	 C.	 Rinard,	 “Survival	 Strategies	 for	 Synthesized	 Hardware	 Systems.”	 Proc.	 of	
MEMOCODE,	2009.	

[33] P.	Bogdan	and	R.	Marculescu,	“Non‐Stationary	Traffic	Analysis	and	Its	 Implications	
on	 Multicore	 Platform	 Design”,	 Computer‐Aided	 Design	 of	 Integrated	 Circuits	 and	
Systems,	IEEE	Transactions	on	,	vol.30,	no.4,	pp.508‐519,	April	2011.	

[34] P.	Ranganathan,	“Saving	the	world	together,	one	server	at	a	time,	ACACES	2011	
[35] F.	R.	Dogar,	P.	Steenkiste,	and	K.	Papagiannaki,	“Catnap:	Exploiting	High	Bandwidth	

Wireless	Interfaces	to	Save	Energy	for	Mobile	Devices”,	ACM	MobiSys	2010.	
[36] A.	Raghavan,	Y.	Luo,	A.	Chandawalla,	M.	Papaefthymiou,	K.	P.	Pipe,	T.	F.	Wenisch,	and	

M.	M.	K.	Martin,	“Computational	Sprinting”,	Proc.	of	the	18th	International	Symposium	
on	High	Performance	Computer	Architecture	(HPCA),	Feb.	2012.	

[37] Millimeter	 cubed	 computer	 system	 from	 Michigan,	 (available	 online	 at	
http://www.edn.com/article/512851‐Researchers_claim_millimeter_scale_computing	
_system.php)	

	
	

 75

Appendix	

Workshop	Organizers	

Massoud	Pedram	(USC)	‐‐	CPOM	Workshop	Chair	
David	Brooks	(Harvard)	‐‐	CPOM	Workshop	Co‐chair	
Timothy	Pinkston	(USC)	‐‐	CPOM	Workshop	Co‐chair	
	

NSF	Sponsors	

Sankar	Basu	(Program	Director,	NSF	CISE/CCF)	
Ahmed	Louri	(Program	Director,	NSF	CISE/CCF)	
	

Attendee	List	

Area	1	‐	Technology,	Circuits	and	Beyond	

				Mohamed	Allam	(Qualcomm)		
				Kaustav	Banerjee	(UC	Santa	Barbara)		
				Keren	Bergman	(Columbia	Univ)		
				David	Blaauw	(Univ	of	Michigan)		
				Eby	Friedman	(Univ	of	Rochester)		
				Lei	He	(UCLA)		
				Payam	Heydari	(UC	Irvine)		
				Peng	Li	(Texas	A&M)		
				Farid	Najm	(Univ	of	Toronto)		
				Michael	Orshansky	(Univ	of	Texas)		
				Kaushik	Roy	(Purdue)	‐‐‐	Area	Lead	
				Sachin	Sapatnekar	(Minnesota)		
						

Area	2	‐	Circuits,	Micro‐architecture	and	Beyond	

				Christopher	Batten	(Cornell)		
				Naehyuck	Chang	(Seoul	National	Univ)		
				Jason	Cong	(UCLA)	‐‐‐	Area	Lead	
				Sandeep	Gupta	(USC)		
				Engin	Ipek	(University	of	Rochester)		
				Bill	Joyner	(SRC)	
				Eren	Kursun	(IBM)		
				Renu	Mehra	(Synopsys)		
				Vijaykrishnan	Narayanan	(Penn	State)		
				Qinru	Qiu	(Syracuse	Univ)		
				Karthick	Rajamani	(IBM	Research,	Austin)		
				Karu	Sankaralingam	(Wisconsin)		
				Mircea	Stan	(Univ	of	Virginia)		

 76

				Lin	Zhong	(Rice	Univ)		
						

Area	3	‐	Micro‐architecture,	Systems	and	Beyond	

				Murali	Annavaram	(USC)		
				Rajeev	Balasubramonian	(Univ	of	Utah)		
				Pradip	Bose	(IBM)		
				Jeffrey	Draper	(USC)		
				Sudhanva	Gurumurthi	(U.	Virginia)		
				Brucek	Khailany	(Nvidia)		
				Hyesoon	Kim	(GaTech)		
				Margaret	Martonosi	(Princeton)	‐‐‐	Area	Lead	
				Rami	Melhem	(University	of	Pittsburgh)		
				Trevor	Mudge	(Univ	of	Michigan)		
				Onur	Mutlu	(CMU)		
				Mani	Srivastava	(UCLA)		
				Michael	Taylor	(UCSD)		
				Josep	Torrellas	(Univ	of	Illinois	UC)		
						

Area	4	‐	Systems,	Applications	and	Beyond	

				David	Andersen	(CMU)		
				Luca	Benini	(University	of	Bologna)	‐‐‐	Area	Lead	
				Paul	Bogdan	(CMU)		
				Pai	Chou	(UC	Irvine)		
				Rajesh	Gupta	(UCSD)		
				Mark	Hill	(U.	Wisc‐Madison)	
				Benjamin	C.	Lee	(Duke	Univ)		
				Per	Ljung	(Nokia)		
				Jose	Moreira	(IBM	Research)		
				Kunle	Olukotun	(Stanford)		
				Viktor	Prasanna	(USC)	
				Parthasarathy	Ranganathan	(HP	Labs)	
				Vijay	Janapa	Reddi	(UT‐Austin)		
				Steve	Swanson	(UCSD)		
				Tom	Wenisch	(Univ	of	Michigan)		
						

Government	Agencies	

				Sankar	Basu	(NSF)		
				Brian	Davidson	(ST	Associates)		
				Jon	Hiller	(ST	Associates)		
				Charles	J.	Holland	(DARPA	MTO)		
				Ahmed	Louri	(NSF)		

