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Abstract

The neural network quantization is highly desired pro-
cedure to perform before running neural networks on mo-
bile devices. Quantization without fine-tuning leads to ac-
curacy drop of the model, whereas commonly used training
with quantization is done on the full set of the labeled data
and therefore is both time- and resource-consuming. Real
life applications require simplification and acceleration of
quantization procedure that will maintain the accuracy of
full-precision neural network, especially for modern mobile
neural network architectures like Mobilenet-v1, MobileNet-
v2 and MNAS.

Here we present two methods to significantly optimize
the training with quantization procedure. The first one
is introducing the trained scale factors for discretization
thresholds that are separate for each filter. The second
one is based on mutual rescaling of consequent depth-
wise separable convolution and convolution layers. Us-
ing the proposed techniques, we quantize the modern
mobile architectures of neural networks with the set of
train data of only ∼ 10% of the total ImageNet 2012
sample. Such reduction of train dataset size and small
number of trainable parameters allow to fine-tune the
network for several hours while maintaining the high
accuracy of quantized model (accuracy drop was less
than 0.5%). Ready-for-use models and code are avail-
able at: https://github.com/agoncharenko1992/FAT-fast-
adjustable-threshold.

1. Introduction
Mobile neural network architectures [9, 20, 22] allow

running AI solutions on mobile devices due to the small size
of models, low memory consumption, and high processing

speed while providing a relatively high level of accuracy
in image recognition tasks. In spite of their high computa-
tional efficiency, these networks continuously undergo fur-
ther optimization to meet the requirements of edge devices.
One of the promising optimization directions is to use quan-
tization to int8, which is natively supported by mobile pro-
cessors, either with or without training. Both methods have
certain advantages and disadvantages.

Quantization of the neural network without training is
a fast process as in this case a pre-trained model is used.
However, the accuracy of the resultant network is particu-
larly low compared to the one typically obtained in com-
monly used mobile architectures of neural networks [14].
On the other hand, quantization with training is a resource-
intensive task which results in low applicability of this ap-
proach.

Current article suggests a method which allows speed-
ing up the procedure of training with quantization and at
the same time preserves a high accuracy of results for 8-bit
discretization.

2. Related work
In general case the procedure of neural network quanti-

zation implies discretization of weights and input values of
each layer. Mapping from the space of float32 values to the
space of signed integer values with n significant digits is
defined by the following formulae:

Sw =
2n − 1

Tw
(1)

Tw = max|W | (2)

Wint = bSw ·W e (3)
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Wq = clip(Wint,−(2n−1 − 1), 2n−1 − 1) =

= min(max(Wint,−(2n−1 − 1)), 2n−1 − 1)
(4)

Here b e is rounding to the nearest integer number, W
– weights of some layer of neural network, T – quantiza-
tion threshold, max calculates the maximum value across
all axes of the tensor. Input values can be quantized both
to signed and unsigned integer numbers depending on the
activation function on the previous layer.

Si =
2n − 1

Ti
(5)

Ti = max|I| (6)

Iint = bSi · Ie (7)

Isignedq = clip(Iint,−(2n−1 − 1), 2n−1 − 1) (8)

Iunsignedq = clip(Iint, 0, 2
n − 1) (9)

After all inputs and weights of the neural network are
quantized, the procedure of convolution is performed in a
usual way. It is necessary to mention that the result of op-
eration must be in higher bit capacity than operands. For
example, in Ref. [12] authors use a scheme where weights
and activations are quantized to 8-bits while accumulators
are 32-bit values.

Potentially quantization threshold can be calculated on
the fly, which, however, can significantly slow down the
processing speed on a device with low system resources.
It is one of the reasons why quantization thresholds are usu-
ally calculated beforehand in calibration procedure. A set of
data is provided to the network input to find desired thresh-
olds (in the example above - the maximum absolute value)
of each layer. Calibration dataset contains the most typical
data for the certain network and this data does not have to
be labeled according to procedure described above.

2.1. Quantization with knowledge distillation

Knowledge distillation method was proposed by G. Hin-
ton [8] as an approach to neural network quality improve-
ment. Its main idea is training of neural networks with
the help of pre-trained network. In Refs. [16, 17] this
method was successfully used in the following form: a full-
precision model was used as a model-teacher, and quan-
tized neural network - as a model-student. Such paradigm
of learning gives not only a higher quality of the quantized
network inference, but also allows reducing the bit capac-
ity of quantized data while keeping an acceptable level of
accuracy.

2.2. Quantization without fine-tuning

Some frameworks allow using the quantization of neural
networks without fine-tuning. The most known examples
are TensorRT [3], Tensorflow [4] and Distiller framework
from Nervana Systems [1]. However, in the last two mod-
els calculation of quantization coefficients is done on the
fly, which can potentially slow down the operation speed of
neural networks on mobile devices. In addition, to the best
of our knowledge, TensorRT framework does not support
quantization of neural networks with the architectures like
MobileNet.

2.3. Quantization with training / fine-tuning

One of the main focus points of research publications
over the last years is the development of methods that allow
to minimize the accuracy drop after neural network quanti-
zation. The first results in this field were obtained in Refs.
[7, 10, 18, 23]. The authors used the Straight Through Esti-
mator (STE) [6] for training the weights of neural networks
into 2 or 3 bit integer representation. Nevertheless, such
networks had substantially lower accuracy than their full-
precision analogs.

The most recent achievements in this field are presented
in Refs. [15, 24] where the quality of trained models is
almost the same as for original architectures. Moreover, in
Ref. [24] the authors emphasize the importance of the quan-
tized networks ensembling which can potentially be used
for binary quantized networks. In Ref. [12] authors report
the whole framework for modification of network architec-
ture allowing further launch of learned quantized models on
mobile devices.

In Ref. [5] the authors use the procedure of thresh-
old training which is similar to the method suggested in
our work. However, the reported approach has substantial
shortcomings and cannot be used for fast conversion of pre-
trained neural networks on mobile devices. First of all it has
a requirement to train threshold on the full ImageNet dataset
[19]. Besides, it has no examples demonstrating the accu-
racy of networks used as standards for mobile platforms.

In current paper we propose a novel approach to set the
quantization threshold with fast fine-tuning procedure on
a small set of unlabeled data that allows to overcome the
main drawbacks of known methods. We demonstrate per-
formance of our approach on modern mobile neural net-
work architectures (MobileNet-v2, MNAS).

3. Method description
Under certain conditions (see Figures 1-2) the processed

model can significantly degrade during the quantization
process. The presence of outliers for weights distribution
shown in Figure 1 forces to choose a high value for thresh-
olds that leads to accuracy degradation of quantized model.
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Figure 1. Distribution of weights of ResNet-50 neural network be-
fore the quantization procedure.

Figure 2. Distribution of weights of ResNet-50 neural network af-
ter the quantization procedure. The number of values appeared in
bins near zero increased significantly.

Outliers can appear due to several reasons, namely spe-
cific features of calibration dataset such as class imbalance
or non-typical input data. They also can be a natural feature
of the neural network, that are, for example, weight outliers
formed during training or reaction of some neurons on fea-
tures with the maximum value.

Overall it is impossible to avoid outliers completely be-
cause they are closely associated with the fundamental fea-
tures of neural networks. However, it is possible to find a
compromise between the value of threshold and distortion
of other values during quantization and get a better quality
of the quantized neural network.

3.1. Quantization with threshold fine-tuning

3.1.1 Differentiable quantization threshold.

In Refs. [10, 23, 6] it is shown that the Straight Through
Estimator (STE) can be used to define a derivative of a func-

tion which is non-differentiable in the usual sense (round,
sign, clip, etc). Therefore, the value which is an argument
of this function becomes differentiable and can be trained
with the method of steepest descent, also called the gradi-
ent descent method. Such variable is a quantization thresh-
old and its training can directly lead to the optimal quality
of the quantized network. This approach can be further op-
timized through some modifications as described below.

3.1.2 Batch normalization folding.

Batch normalization (BN) layers play an important role
in training of neural networks because they speed up train
procedure convergence [11]. Before making quantization
of neural network weights, we suggest to perform batch
normalization folding with the network weights similar to
method described in Ref. [12]. As a result we obtain the
new weights calculated by the following formulae:

Wfold =
γW√
σ2 + ε

(10)

bfold = β − γµ√
σ2 + ε

(11)

We apply quantization to weights which were fused with
the BN layers because it simplifies discretization and speeds
up the neural network inference. Further in this article the
folded weights will be implied (unless specified otherwise).

3.1.3 Threshold scale.

All network parameters except quantization thresholds
are fixed. The initial value of thresholds for activations is
the value calculated during calibration. For weights it is
the maximum absolute value. Quantization threshold T is
calculated as

T = clip(α,minα,maxα) · Tmax (12)

where α is a trained parameter which takes values from
minα to maxα with saturation. The typical values of these
parameters are found empirically, which are equal to 0.5 and
1.0 correspondingly. Introducing the scale factor simplifies
the network training since the update of thresholds is done
with different learning rates for different layers of neural
network as they can have various orders of values. For ex-
ample, values on the intermediate layers of VGG network
may increase up to 7 times in comparison with the values
on the first layers.

Therefore the quantization procedure can be formalized
as follows:

Tadj = clip(α, 0.5, 1) · Ti (13)
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SI =
2n − 1

Tadj
(14)

Iq = bI · SIe (15)

The similar procedure is performed for weights. The cur-
rent quantization scheme has two non-differentiable func-
tions, namely round and clip. Derivatives of these func-
tions can be defined as:

Iq = bIe (16)

dIq
dI

= 1 (17)

Xc = clip(X, a, b) (18)

dXc

dX
=

{
1, ifX ∈ [a, b]

0, otherwise
(19)

Bias quantization is performed similar to Ref. [12]:

bq = clip(bSi · Sw · be,−(231 − 1), 231 − 1) (20)

3.1.4 Training of asymmetric thresholds.

Quantization with symmetric thresholds described in the
previous sections is easy to implement on certain devices,
however it uses an available spectrum of integer values
inefficiently which significantly decreases the accuracy of
quantized models. Authors in Ref. [12] effectively im-
plemented quantization with asymmetric thresholds for mo-
bile devices, so it was decided to adapt the described above
training procedure for asymmetric thresholds.
Tl and Tr are left and right limits of asymmetric thresh-

olds. However, it is more convenient to use other two values
for quantization procedure: left limit and width, and train
these parameters. If the left limit is equal to 0, then scaling
of this value has no effect. That is why a shift for the left
limit is introduced. It is calculated as:

R = Tr − Tl (21)

Tadj = Tl + clip(αT ,minαT
,maxαT

) ·R (22)

The coefficients minαT
, maxαT

are set empirically.
They are equal to -0.2 and 0.4 in the case of signed vari-
ables, and to 0 and 0.4 in the case of unsigned. Range width
is selected in a similar way. The values of minαR

, maxαR

are also empiric and equal to 0.5 and 1.

Radj = clip(αR,minαR
,maxαR

) ·R (23)

3.1.5 Vector quantization.

Sometimes due to high range of weight values it is pos-
sible to perform the discretization procedure more softly,
using different thresholds for different filters of the convo-
lutional layer. Therefore, instead of a single quantization
factor for the whole convolutional layer (scalar quantiza-
tion) there is a group of factors (vector quantization). This
procedure does not complicate the realization on devices,
however it allows increasing the accuracy of the quantized
model significantly. Considerable improvement of accuracy
is observed for models with the architecture using the depth-
wise separable convolutions. The most known networks of
this type are MobileNet-v1 [9] and MobileNet-v2 [20].

3.2. Training on the unlabeled data

Most articles related to neural network quantization use
the labeled dataset for training discretization thresholds or
directly the network weights. In the proposed approach
it is recommended to discard initial labels of train data
which significantly speeds up transition from a trained non-
quantized network to a quantized one as it reduces the re-
quirements to the train dataset. We also suggest to opti-
mize root-mean-square error (RMSE) between outputs of
quantized and original networks before applying the soft-
max function, while leaving the parameters of the original
network unchanged.

Suggested above technique can be considered as a spe-
cial type of quantization with distillation [16] where all
components related to the labeled data are absent.

The total loss function L is calculated by the following
formula:

L(x;WT ,WA) =

= αH(y, zT ) + βH(y, zA) + γH(zT , zA)
(24)

In our case α and β are equal to 0, and

H(zT , zA) =

√√√√ N∑
i=1

(zTi − zAi )2
N

(25)

where:

• zT is the output of non-quantized neural network,

• zA is the output of quantized neural network,

• N is batch size,

• y is the label of x example.
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3.3. Quantization of depth-wise separable convolu-
tion

During quantization of models having the depth-wise
separable convolution layers (or DWS-layers) it was noticed
that for some models (MobileNet-v2, MNasNet with the
lower resolution of input images) vector quantization gives
much higher accuracy than the scalar quantization. Besides,
the usage of vector quantization instead of scalar only for
DWS-layers gives the accuracy improvement.

In contrast to the scalar quantization, vector quantization
takes into account the distribution of weights for each filter
separately - each filter has its own quantization threshold.
If we perform rescaling of values so that the quantization
thresholds become identical for each filter, then procedures
of scalar and vector quantization of the scaled data become
equivalent.

For some models this approach may be inapplicable be-
cause any non-linear operations on the scaled data as well
as addition of the data having different scaling factors are
not allowed. Scaling the data can be made for the particular
case DWS → [ReLU ]→ Conv (see Figure 3). In this case
only the weights of the model change.

3.3.1 Scaling the weights for MobileNet-V2 (with
ReLU6).

As it is mentioned above, the described method is not
applicable for models which use the non-linear activation
functions. In case of MobileNet, there is ReLU6 activa-
tion function between the convolutional operations. When
scaling the weights of a DWS-filter, the output of the DWS-
layer is also scaled. One way to keep the result of the neural
network inference unchanged is to modify the ReLU6 func-
tion, so that the saturation threshold for the k-th channel is
equal to 6 · SW [k]. However, it is not suitable for the scalar
quantization technique.

In practice, the output data for some channels of a DWS-
layer Xk may be less than 6.0 on a large amount of input
data of the network. It is possible to make rescaling for
these channels, but with the certain restrictions. The scaling
factor for each of these channels must be taken so that the
output data for channels Xk does not exceed the value 6.0.

If Xk < 6 and Xk · SW [k] < 6, then

min(6, Xk · SW [k]) = SW [k] ·min(6, Xk) (26)

Consequently:

ReLU6(Xk · SW [k]) = SW [k] ·ReLU6(Xk) (27)

We propose the following scheme of scaling the DWS-
filter weights.

1. Find the maximum absolute value of weights for each
filter of a DWS-layer.

2. Using the set of calibration data, determine the max-
imum values each channel of the output of the DWS-
layer reaches (before applying ReLU6).

3. Mark the channels where the output values exceed 6.0
or are close to it as “locked”. The corresponding filters
of the DWS layer must stay unchanged. We propose to
lock the channels where the output data is close to the
value 6.0, because it could reach this value if we use a
different calibration dataset. In this article we consider
5.9 as the upper limit.

4. Calculate the maximum absolute value of weights for
each of the locked filters T (wfixedi ). The average of

these maximum values T0 = T (wfixedi ) becomes a
control value that is used for scaling the weights of
non-locked filters. The main purpose of such choice is
to minimize the difference between the thresholds of
different filters of the DWS-layer.

5. Find the appropriate scaling factors for non-locked
channels.

6. Limit these scaling factors so that the maximum values
on the DWS-layer output for non-locked channels do
not exceed the value 6.0.

4. Experiments and Results
4.1. Experiments description

4.1.1 Researched architectures.

The procedure of quantization for architectures with high
redundancy is practically irrelevant because such neural net-
works are hardly applicable for mobile devices. Current
work is focused on experiments on the architectures which
are actually considered to be a standard for mobile de-
vices (MobileNet-v2 [20]), as well as on more recent ones
(MNasNet [22]). All architectures are tested using 224 x
224 spatial resolution.

4.1.2 Training procedure.

As it is mentioned above in the section 3.2 (“Training
on the unlabeled data”), we use RMSE between the original
and quantized networks as a loss function. Adam optimizer
[13] is used for training, and cosine annealing with the re-
set of optimizer parameters - for learning rate. Training is
carried out on approximately 10% part of ImageNet dataset
[19]. Testing is done on the validation set. 100 images from
the training set are used as calibration data. Training takes
6-8 epochs depending on the network.
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Figure 3. Scaling the filters of DWS + Convolution layers where the output of DWS + Convolution remains unchanged. Numbers in square
brackets denote the dimension of the scaling factors. WDWS represents the weights of the DWS layer, and WConv - the weights of the
convolution layer. Note that the scaling factor SW > 0.

Architecture Symmetric Asymmetric Original
thresholds, thresholds, accuracy,

% % %
MobileNet v2 8.1 19.86 71.55
MNas-1.0 72.42 73.46 74.34
MNas-1.3 74.92 75.30 75.79

Table 1. Quantization in the 8-bit scalar mode.

4.2. Results

The quality of network quantization is represented in the
Tables 1-2.

Experimental results show that the scalar quantization of
MobileNet-v2 has very poor accuracy. A possible reason
of such quality degradation is the usage of ReLU6 activa-
tion function in the full-precision network. Negative in-
fluence of this function on the process of network quanti-
zation is mentioned in Ref. [21]. In case of using vector
procedure of thresholds calculation, the accuracy of quan-
tized MobileNet-v2 network and other researched neural
networks is almost the same as the original one.

The Tensorflow framework [4] is chosen for implemen-
tation because it is rather flexible and convenient for further
porting to mobile devices. Pre-trained networks are taken
from Tensorflow repository [2]. To verify the results, the
program code and quantized scalar models in the .lite for-
mat, ready to run on mobile phones, are presented in the
repository specified in the abstract.

Architecture Symmetric Asymmetric Original
thresholds, thresholds, accuracy,

% % %
MobileNet v2 71.11 71.39 71.55
MNas-1.0 73.96 74.25 74.34
MNas-1.3 75.56 75.72 75.79

Table 2. Quantization in the 8-bit vector mode.

The algorithm described in the section 3.3 (“Quantiza-
tion of depth-wise separable convolution”) gives the fol-
lowing results. After performing the scalar quantization
of the original MobileNetV2 model, its accuracy becomes
low (the top-1 value is about 1.6%). Applying the weights
rescaling before the quantization increases the accuracy of
the quantized model up to 67% (the accuracy of the orig-
inal model is 71.55% 1). To improve the accuracy of the
quantized model we use fine-tuning of weights for all filters
and biases. Fine-tuning is implemented via trainable point-
wise scale factors where each value can vary from 0.75 to
1.25. The intuition behind this approach is to compensate
the disadvantages of the linear quantization by slight mod-
ification of weights and biases, so some values can change
their quantized state. As a result, fine-tuning improves the
accuracy of the quantized model up to 71% (without train-
ing the quantization thresholds). Fine-tuning procedures are

1The network accuracy is measured on a full validation set Ima-
geNet2012 which includes single-channel images.

6



the same as described in the section 4.1.

5. Conclusion

This paper demonstrates the methodology of neural net-
work quantization with fine-tuning. Quantized networks
obtained with the help of our method demonstrate a high
accuracy that is proved experimentally. Our work shows
that setting a quantization threshold as multiplication of the
maximum threshold value and trained scaling factor, and
also training on a small set of unlabeled data allow using
the described method of quantization for fast conversion of
pre-trained models to mobile devices.
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